VALIDATING AND EVALUATING ADA’S (TRADE NARK)
REPRESENTRTIDN CLAUSES AND 1. (U) AIR FORCE INST OF
H WRIGHT-PATTERSON AFB OH SCHOOL OF ENG
UNCLASSIFIED D 0 JOVCE DEC 87 AFIT/GCS/NA/87D-2 F/G6 12/5

N T N N T T T - -

aks
el
o
==
—
-
4
-,
Bt
i

FFEFERE

p—
—

—

.

—

rr

r

43

> 2
=

L

T
N
E\

U . Cocral TN AR

QA GO0 04 AnY 03¢
b ‘i'«‘o".o'o, .'?":c‘*.c'. DX 0‘."“"."«" I 'o‘ 0‘ 't' ‘I"‘ ‘ ‘.o'.. "."‘."

1 ‘(" RO m',l".'
KR

)
R .
A R A ORN] K

R T
. (st
c,. (X ' u,‘ LR

TG FILE COPY

Py

v
L0
Tg]
o)
. o0
et
T
Q
<
DTIC
[ILICTE,
\\ MAR 0 3 1088
. DEPARTMENT OF THE AIR FORCE A
. AIR UNIVERSITY -
AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Bose, Ohio
f'f‘""woﬁmu“"’ 88 3 01 118

U]
i.,"*, :

W AFIT/GCS/MA/87D-2

-
o

-
-

-~

X

P)
LX)

. ~.._._--_’~,

VALIDATING AND EVALUATING apA's”

K) REPRESENTATION CLAUSES AND

A IMPLEMENTATION-DEPENDENT FEATURES

k) ON MIL-STD-1750A ARCHITECTURE
THESIS

¢ Daniel 0. Joyce, Captain, USAF

) AFIT/GCS/MA/87D-2

@ * Ada is a registered trademark of the U.S. Government (AJPO).

K Approved for public release; digstribution unlimited.

vatoat T .! .‘ RN .' .' o ;', o' a' |' o '."' ;‘J«‘,cﬁ;'.g"
. LY KMEVeR TR Y 4

"-.

Y \c 1, 8%) 1 o
‘.‘.‘4100‘0 b‘l',o.‘“"“ RGO ._! . .\ ',a ‘.1".. l.o ',q OO RN Y

F et

— T PR W Y RN T N R T WP R W T RO UW TR OW R TE W e e e T e o -y
e

W AFIT/GCS/MA/87D-2

v VALIDATING AND EVALUATING ADA'S" REPRESENTATION CLAUSES AND

%_ IMPLEMENTATION-DEPENDENT FEATURES ON MIL-STD-1750A ARCHITECTURE

3 THESIS

Pregented to the Faculty of the School of Engineering
o of the Air Force Institute of Technology

‘ Air University
f, In Partial Fulfillment of the
gg Requirements for the Degree of
O

D) Master of Science in Computer Systems

Ty
;g Y]
:;’ Daniel 0. Joyce, B.S.

ol Captain, USAF

v, December 1987

% * Ada is a registered trademark of the U.S. Government (AJPO).
h)

v Approved for public release; distribution unlimited.
¢

Ry e , T < - - ~ A \ WUOUOUNGTUDUS P b e ey O T GLUONG
¥ 8 L AT B0 2L DT T I T N FUAE PO MLt PO F M R) 'E L N L AT S T IR PR PN) g s ta, g
l-f ‘cf'».,’ulgff'u .e‘_i.n R’ e |_-|¢fu{.“"::‘. ."'6’;,'.",'4-‘:,.‘ RENEH .'.,u‘g;olhi !A,_f‘,‘f‘o.f‘l"”'f,sv\"l‘,‘._',.’ I RO 'r‘{' PLSER A RN

PR A | [\

W W R W Y T T T T T T Trwewe ey T T ew v "‘“Y'Jw'uv“mvr'w

|
|
I

|
Acknowledgments

I would like to thank the people who helped me to turn a
one page prospectus into a thesis. Mr. Phil Hanselman, lst Lt
Marc Pitarys, and lst Lt Robert Marmelstein of the Air Force
Wright Aeronautical Laboratory and Capt Dave King and SSgt
James Bennett of the Systems Engineering Avionics Facility
patiently explained the quirks of the Ada compilers and
MIL-STD-1750A computers I used in this thegis, which allowed me
to accomplish much more than I could have without their help.
I algso thank my thesis advisor, Lt Col Richard R. Gross, for
forcing me to set my own course in the work, while keeping me
from going down too many blind alleys.

Finally, I would like to thank my wife, Gail, for her
unflagging support through this entire project. She helped me

through the darkest hours, for which I can never thank her

enough.

Daniel 0. Joyce

T,

C e f e e e—ee—
Pigir.botior/
porsilar ity Codes
o ... i and/or
Cict Spucial

Al

it

Table of Contents
Page
Acknowledgments ii
List of Figures .. vi
List of Tables o . . o .. o000 vt
Ligt of Acronyms < <owviid
Abstract L. L L Lo oo oL ix
I. Introduction L ... 1
Problem Statement 2
Background 2
Scope . 5
Regearch Approach . 5
Chapter 13 Feature Identification 8
Write and Run Prototype Tests 6
Identify/Obtain Compilers 6
Write and Run Tests

on Hogt-Targeted Compilers 6
Run Tests on 1750A-Targeted Compilers 7
Certitfy Testz and Analyze Results 7
Materials and Equipment . 7
Maximum Expected Gain 8
Sequence of Presgentation 8
II. Literature Survey < . < < . .. 10
Compiler Validation . . . e e e e e 10
Compiler Performance Evaluation Ce e e e 12
III. System Design of Chapter 13 Feature Tests 18

Identification ot Chapter 13
Featuresz for Testing . . e e e e 18
Address Clauses and Interrupts e 18
Record Representation Clauges 21
Length Clauges . . e e e 21
Interfaces to Other Languages e e 21
Validation Test Requirementg/Desgign . . . 22
Performance Evaluation Test Requirementa/Design 24
Summary L. ... 31
IV. Detailed Desgign of Teat Procedures 33
Prototype Tegt Desgign 33

iid

O (A b P UM N KRS
.l“,‘f‘ﬁ"'.l‘.‘ﬂﬂ.’?‘,' 4','40.‘;" X 'A' UMM “."t’,

Detailed Prototype
Validation Test Design
Detailed Prototype
Performance Evaluation Test Design.
Problems in Prototype
Test Design and Certification
Address Clauses and Interrupts Test Desigr.
Detailed Validation Test Design
Detailed Performance
Evaluation Teat Deszign .
Validation Test Degign Problems
Performance Evaluation
Tegt Degign Problems
Summary e

V. Analysis and Results

Certification of Validation Tests
Teat Simplicity
Minimization of Error- Prone Constructs
Certification of Test Correctness
Without the Feature
Combinationg Tested Separately
Eliminate Implementation-
Dependencies in Tests. .
Review by ACVC Test Developers
Validation Test Results
Enumeration Representatxon Clauses
Address Clauses and Interrupts
Certification of Performance Evaluation Tests
Current Use of Interrupts Feature
Alternative Use of Interrupts Feature
Performance Evaluation Test Results
Enumeration Repregsentation Clauses
Addreas Clauses and Interrupts
Summary

VI. Conclusions and Recommendations

Appendix

Appendix
Appendix
Appendix

Appendix

The Problem Revisited
Concluegions
Recommendations for Future Research

A: Chapter 13 Test Objectives and
Degign Quidelines

Validation Test Software
Performance Evaluation Test Software

Validation Test Results

m o O w

Performance Evaluation Test Results

iv

33

35

40
42
42

42
47

51
52

54

55
55
55

56
56

57
57
58
59
59
60
61
61
64
64
65
66

68
68
69
73
75
80
88
99

103

,».!1!.0‘, ‘lq ‘I‘."i"‘."‘,.f..n. 0 "’,’=.5‘ ‘ I ’. ‘. I] l.| .' 0‘| .. .a 0.. |.| :.g l.‘ i‘g i.‘, .g’ .’. g’ .' C,y l..i"") - ,',-_\
Pt T b) ¥ ' (1]

T—— TR TETE R W WO W WO T TSI

Appendix F: Detailed Description of Time_Package 1750A . . 104
Appendix G: Two~Sample ¢t Test Calculations 115
Bibliography

Vita B B 4o

O
LA

b ATl BOCONOROAOSOSOOOOGOOOUNOOUS QMO ML P UMM AT) AN

Ay List of Figures

v Figure Page
;$: 1. Benchmark Test Loop 26
Jké 2. Optimized Benchmark Test Loop 27
, 3. PIWG Optimization Control Package 37
n@ 4. Performance Benchmark Structure e e e e e e 39
e 5. Example Interrupt Delay Benchmark 46
(6. Address Clause Example 48

» 7. Address Clause Example with Macro 49

XN vi

% @

'.

K A e
8,80, 000, S
gt l"!‘,l’.,l"bl.'., 5 o

- “on o ~ , . | . .
X) Vg Vg T T R AT T L W g g Ve 0 S UV P e P N h S dad
A l"‘e':ft‘.-.l‘.}ﬂ ‘nt”;':’d,’,f",‘,‘:f?‘q*‘,‘.‘l?*;!,.ea' R B I C’i’hi‘%j','-'! ,f?' R Pt e et

3 .

o w T L acieadieabib by gk allteabiatiabioa, |
L

] List of Tables

’ Table Page
W I. QGET_ALL_TIMES and CLOCK Execution Timee 30
e I1. Interrupts Benchmark Configuration 44
3y III. G@Generic Compiler Description 54

oo 1V. Interrupts Benchmark Results 65

vii

l..l - N e . . P . . B ey r - . P
AN b o Cr g L \) UOCUAN) 00 St .' .Q Y 54 .' at '} _“ DY) .' ot A “)
o A T R o

/3 PO LN R OO K3 .

.
st
'V
i Ligst of Acronyms
Al
W
/
o> ACM Association for Computing Machinery
L)
o]
? ACVC Ada Compiler Validation Capability
LS
} ACEC Ada Compiler Evaluation Capability
D
) AFWAL Air Force Wright Aeronautical Laboratory
K
g AlIG ACVC Implementers’ Guide
AJPO Ada Joint Program Office
B
p ASD Aeronautical Systems Division
AVF Ada Validation Facility
[)
f CPU Central Processing Unit
LO>
" DoD Department of Defense
HOL High Order Language
; KB Kilo Byte
I1/0 Input/Output
o LRM Language Reference Manual
L
M PIWG Performance Iasues Working Group
&
" SIGAda Special Interest Group on Ada
¥
;I
L
¥
’
"
'
o
A
q
.'
“
;
viit
¢
K)
'
‘ .

i 3 T [(] O (o Ladiiade X A OUOLOLOLN LU MO I OLFOLN M UL MOl
n'u (I A ‘l : gt W By TIATH ‘ N ACARC A AT LD OO DACARCLS MO L L Uiy 3
'n‘.fx'.l"‘.,!lva,l'nFi,a'lfr,it,n,l,;\»),a,'f., AR G AN X o Lttt G NN D RO ARt N

v
RN TR

o
e
v
R AFIT/GCS/MA/87D-2

3

::'t
L4 Abstract

o I

v

.N

¥

.3 Developers of applications for embedded systems need full
RN

) implementations for all of the representation clauses and

3* implementation-dependent features in Chapter 13 of the Language
:; Reference Manual (LRM) if they are to be successful in

¢
R
(developing these applicationg entirely in Ada. Because
\; implementations of Ada’s representation clauses and
{f implementation-dependent features vary from compiler to
" compiler, these features must be validated and evaluated before
S
q; they are used .n applications that have such high reliability
) .,-
L
’: requirements. This thesis describes an approach used to
e
develop validation tests and performance evaluation tests, or

,'
sg benchmarks, for Ada’s address clauses and interrupts features

]
A: and reporte the results of the validation tests and

)
t) benchmarks.
K
‘b The validation tests were compiled with three validated
!.‘
F? Ada compilers, two of which were targeted to the MIL-STD-1750A
A
'.‘ processor. The benchmarks developed in this research measure
.5: interrupt delay time for interrupts associated with a task
IN

LU entry by an address clause. These benchmarks were compiled
.. ’
hb_ with a validated Ada compiler targeted to the MIL-STD-1750A and
o

- run on a Sperry 1631 MIL-STD-1750A processor.

‘.F
-
A
Y

"‘--

o

5

% ix
& g

L
l;‘
bt

---qq,‘ -qhw--vuv 11--1' LR

D 2D 7 A A & 2 » o ﬁ
2, 08 0, S e SO RN AL Y iy nel ‘a‘ '. RO ' AR A"

. Y ,‘_3‘_’. AT AL ;
!“‘ RO RN W, L h s

N
i

[
Qe

4ot O S
b RAA ol ,a",i’ ._1’.‘,0'

VALIDATING AND EVALUATING ADA'S REPRESENTATION CLAUSES AND
IMPLEMENTATION-DEPENDENT FEATURES ON MIL-STD-1750A ARCHITECTURE

I. Introduction

In the mid-19708, because of rising software costs and
increasingly unreiiable software, the Department of Defense
(DoD) started the development of a new high-order computer
programming language, now known as Ada. In an effort to direct
the development and use of the language, the DoD egtablished
the Ada Joint Program Office (AJPO) to manage all Ada-related
activities (Booch, 19887:22). One of the most important
activities of the AJPO is validating Ada compilers (programs
that translate Ada source code into machine instructions),
because, by DoD directive, only validated Ada compilers can be
used to develop Ada software for the DoD (AJPO, 1987). To be
validated, a compiler must pass a serieg of tegts, known as the
Ada Compiler Validation Capability (ACVC), that demonstrates
the compiler’'s adherence to ANSI/MIL-STD-1815A, Ada Programming
Language Reference Manual (LRM) (DoD, 1983).

Even if a compiler is validated, it still may not meet the
execution requirements of embedded systems. The validation
procegs does not provide an evaluation of a compiler’'s
efficiency or performance; it will only determine whether or

not a compiler complies with the Ada LREM (AJPO, 1987:1).

PR AT SRR PO SOA (,,.4'\.‘-,’3_’-,_.'__ T

57 TR % k Nid T o A A T NI QOO
DO MO 3 { Wi M M MO o) YOI MY o M Y Py i M LA AT AR RJOCH L CO R AN R R R NSRS

Lokl ol a o fd ok o hat A kol x TEr T TR WO T e TR wWwTITH TR
L

fﬁ Problem Statement
)
ms Before using an Ada representation clausge or
i
VFJ implementation-dependent feature described in Chapter 13l of
Y X
*
;:f the LRM, researchers and developers of embedded applications in
\ 3
N
ﬂ\ Ada must determine two things:
Wy 1) Does the Chapter 13 feature’'s implementation
nd conform to the description in the Ada Programming
W
x: Language Reference Manual (LREM)?
f&f 2) If so, how efficient is the implementation
((compared to other compilers’ implementations of the
yeg: game feature)?
¢ ,’:‘
f\ Ada validation and performance evaluation tests did not exist
TN
iy
1N to answer these questions when this thesis project began.
o
.S: Background
:g One of the driving forces behind the development of Ada
e was a Department of Defense (DoD) need to develop a high order
u; language that met the requirements of embedded systems (Booch,
~".
LN
“ 1987:14). Booch defines an embedded system as a “computer
‘3' system . . . that forms a part of a larger system whose purpose
kY
J: is not primarily computational, such as a weapons system or a
>0 process controller” (Booch, 1987:15-16). Because of physical
i? limitations on embedded systems’ memory (often 64 to 128
:\. kilobytes) and embedded systems’' real-time processging

L) ', [
R
W requirements, applications for embedded system2 often were (and
i)
()
)
o, still are) written in JOVIAL (DoD, 1884), asaembly
[} .
Mg
o2 1 . . .
oL For the sake of brevity I will refer to the representation
b claugses and implementation-dependent features of Ada as
) "Chapter 13 features” in the coursge of thie thesis.
)
‘a
\. 1] 2
O
0
@

RXWL) A)
'.!c’.‘l .l?. ;

] -)
OO0) OB (A BACK) OGN 0L l . D0 DO
.ofg‘t v, ‘i, 'g!“h, .n, .., .o‘ t, .“i‘ u,‘.n‘.., .u‘.‘g‘. 0‘...“. i,t‘“& ,l “’". i .o ,« ,u .\ ‘.Q “0.‘ ...|' .. .\. ..‘ () 0.. l‘. ‘. 0‘. I" 1'. l" e, W N NN

WO E I WY P IR YTy .l Ae 2. o 2= A o ate Aa o a s 4 8 Bt 4 b Aok Aol Sal dal Al sab de b okl AL aRA all al4 Akl Ale Aok A f S dedo A B el ok o -

language, or some combination of the two (King, 1987), because
of the compactness and execution time efficiency of
applications developed in these languages. However, although
JOVIAL and assembly language routines can address memory
directly and efficiently perform other low-level operations,
applications written in these languages are difficult to
maintain. Since the DoD has directed that Ada be used to
develop all new embedded applications (DoD, 1987), the Chapter
13 features will have to perform these low-level operations as
efficiently as JOVIAL and agsembly language if Ada is to
eventually replace those languages.

Ada’'s representation clauses (1) describe how data types
(such as integer, real, array, and record types) are to be

mapped onto the underlying machine, thus allowing for a more

efficient representation than would be possible with the
default definitions for these types; and (2) allow the direct
specification of memory addresses for objects and programs
(DoD, 1983:Ch 13, 1). For example, assume an embedded system
whose normal representation for integer data types is a 16-bit
word. If the developer knows that all of the integer values in
an application can be stored in eight bits, he can define the
representation for integers to be eight bits, effectively
doubling the number of integers he can store.

The implementation-dependent features of Ada provide (1)
for gspecifying underlying system characteristics; (2) for
freeing unused memory that has been dynamically allocated; and

(3) for performing data conversions that Ada normally does not

- - L T N e S L N R L L G
" ‘A. 3 .. I b ‘,' > . Bor's o\ » o+ ".- ‘..‘{-,'((::‘p‘ E) ‘."“-\fh"‘.- r “".p.-x \‘(_- '.l‘.‘h NG ‘n\ '.N(~'
T e N A e N e T e D s S TR 5 eI Dt ALALHE ’ e)

AT AT A AT N AT A AT
NGV SEAGNER IR
U il Ko ® A OASAAA IR AN

- PUII2EL

;ﬁ allow because of its strong typing (Booch, 1987:332). Without
:; these features, Ada can not perform the same functions as
a. agssembly language routines; therefore, the featuresg in Chapter
h 13 are vital to any embedded applications written entirely in
»

k Ada.

. Only one organization, SofTech Inc., ig8 now developing

o

H‘ tests (Wilson, 1887a) for the ACVC for the existence and

{q correct implementation of Chapter 13. While additional tests
Sﬁ will be added to the ACVC in subsequent releases, version 1.9
E% of the ACVC, released 1 June 1987, included only four Chapter
&! 13 tests, and these test but one feature (Wilson, 1987a).

,: There are at least two major efforts underway for

v

E evaluating the performance of Ada compilers. The Boeing

!f Military Airplane Company is currently under contract to the
= Ada Evaluation and Validation Team of the AJPO to develop the
ﬁ; Ada Compiler Evaluation Capability (ACEC), a test suite that
i. will include performance tests for (among others) Chapter 13
o features of the language (BMAC,1987). The second effort is

: that of the Performance Issues Working Group (PIWG) of the

.j Association for Computing Machinery (ACM) Special Interest

'5 Group on Ada (SIGAda). Among other activities, the PIWG
.3 collects compiler benchmarks from its members and places them
% in the public domain; performance evaluation benchmarks for
" Chapter 13 features are among these (Squire, 1987).
i“
;

M @ AN B
>

-
[
¥

W,

A . L P L I I Y 0\ » [T at Vb 0 ~ -t o PRI . R L M LAY
T Y0 (0 ' WG LA A OO AT ! O () 1 OUOODOE KA MEOUGOR RN
R KA RN ’1‘:fl‘;?“'&,“"e-"@?"d%"h‘if"ﬂ‘f"i?“l;‘Qi&“«"‘.""l 4 3‘.&*'?’"’:""-!"i‘,",b!"\f’ft"’."?i"’!"f‘é“??"'w" POIETT b

T Y VN T YT T B TR TR YT Y T W T T YT T E T ST WY R EF TV EOTE T TN T ENEE T T ERHWEE TR ERLUWURNMNTLUEFLIEUET TR IWITET OTET T WL W T WA LAY T W T e

>
-

Scope

The goals of this thesis project, then, were (1) to expand
the existing compiler validation and evaluation methods or
develop new methods, as necessary, for validating and
evaluating Chapter 13 features of Ada and (2) to certify these

methods by writing needed validation and evaluation tests and

Y O R N R e C TN &

applying them to compilers targeted to embedded computers. All

o

£ compilers run on one computer (the "hosgt computer”) and produce
Q machine instructions for another computer (the “target

3 computer”) that may or may not be the same as the host. 1In

g this thesis, I studied Ada compilers targeted to MIL-STD-1750A
! computers, the standard airborne (embedded) computers for the

b U.S. Air Force (DoD, 1982:1).

p I did not develop teats for all of the features in Chapter
:_ 13; instead, I concentrated on the features most important to
2; the development of embedded systems applications. My ordering
'E of importance was based on the assumption that embedded systems
" developers would be using a mix of Ada, JOVIAL, and assembly

;; language in the near future because of the current lack of Ad>
:: compilers with full Chapter 13 implementations targeted to the
: MIL-STD-1750A computer.

]

: Research Approach

ii . Chapter 13 Feature ldentification. I identified the most
»ﬁ important Chapter 13 features for embedded systems by a review
& of current literature and by discussions with embedded systems
’; developers in the Aeronautical Systems Division Systems

e . o\ ~
ALRGPON > DOOCOOCL00 Y il (% ¢
MO OO e AR ‘t‘ \‘.’n‘a‘t‘ﬁ«' e '«' Lol e '4‘3«". K W, e, t‘e i " "t,!’o)".‘ O ,z,ﬁn, Wil ‘.i“ Hita "o, i X

TN ETEN EN T TETTEFTET ZEvfrarrEyTEyTE T |y | "“wT

X
:

- Engineering Avionics Facility (ASD/ENASF), embedded systems
5& developers in the Air Force Wright Aeronautical Laboratories
:; System Evaluation Branch (AFWAL/AAAF) and Information
:2 Processing Technology Branch (AFWAL/AAAT), and other embedded
Eg systems developers in the Air Force and industry.

l;' Write and Run Prototype Tests. I wrote tests for the

validity and efficiency of a Chapter 13 feature that was

.,--

implemented by at least two Ada compilers targeted to the host

o~ . .

,; computer. The process of writing and running these tests

fﬁ helped to refine the requirements for the remaining tests, to
0] identify potential problem areas, and to learn the gize and

BT difficulty of the theszieg problem.

ff Identify/Obtain Compilers. Based on the Chapter 13

f; features identified for study, I chose the candidate compilers
) that were used in my thesis project. I included compilers that
:a were hosted on and targeted to the same computer, as well as

%‘ compilers that were targeted to a MIL-STD-1750A computer to

“ provide a broad range of compiler/host combinationg. Compilers
§. targeted to the host machine typically included better tools

ﬁ_ (such as debuggers), which were helpful in developing the test
'Q software.

i\ Write and Run Tests on Host-Targeted Compilers. Using the
kﬂ methods developed in writing the prototype tests, I wroté the
;? teates for the Chapter 13 features identified earlier and then
i: ran the teats on the compilers that were targeted to the host
o)

4

computer to take advantage of diagnostic tools discussed

leias e W -
IOUCH/OL B0 DL OO GO
O OOOOIN X IO '?S;‘,!}’ N

'Y R 0 A

R LN O M N N Wt T 3 M SR N M A T)
i St e “.,'a.‘.‘h‘.-'l“.“«"_."l.' ,fﬂ‘,':‘,'vtﬁ /‘,o’f‘,;'b‘_g"‘.1"3!‘&’7"5’9'52!‘“”4 M b f‘?équs.le:"tsh‘ \ !

% e\l

s
ot

B

?f above. Based on this preliminary testing and analysgis, I had
§ to re-write and re-run some of these tests.

EW Run Tests on 1750A-Targeted Compilers. After establishing
.. the validity of the tests on the host-targeted compilers, 1

&“ applied them to the Ada compilers that are targeted to the

&ﬂ MIL-STD-1750A computers.

52 Certify Tegts and Analyze Results. Finally, I certified

),

% that the tests developed in this thesis answered the queations
g; stated in the thesis problem and analyzed the resultg of the

ﬁ tests. The results of the validation tests were discrete; a

:ﬁ compiler either passed or failed the applicable tests. The

7; results of the performance evaluation teat were continuous

}f execution times, so I was able to support the hypothesis that
?; the mean tegt execution times for various benchmarks differed,
el and to explain the causes for those differences. Using these

B

EE results, I wrote conclusions and recommendations.

R Materials and Equipment

E? The compilers needed for this thesis, including compilers
§' that are targeted to the MIL-STD-1750A computer, were generally
¥ available at AFIT and through organizations at Wright-Patterson
:g AFB. AFWAL/AAAT and the thesis sponaor, ASD/ENASF, provided

o

,i acceegs to MIL-STD-1750A computers, Ada compilers targeted to
thoge computers, and the asgsistance of perasonnel knowledgeable
:f in the operation of this hardware and software. Finally, I was
i: given access to the ARPANET to obtain public domain test

:3 software and information on the state of current Ada research.

Wy YOO v oy ¥ AL B R B I OO o RN A eI IO R OUO NN QT
2 .fn‘.'l.vfth'ﬂsqf',!",52*,"%.4"’;",«' «,e,'u.c’*,!f‘,!?"o:f,e:".'.‘ W T '9‘0,4,|f!5|‘!.‘}.Qi.o.f,i“a!}g'f.tfﬂ,‘;‘“’ﬂ_ﬂ';';'.,"‘ft‘ ‘ ‘I“.\Of: 4'.?:‘;.!6..‘*“:"_ Rt et

._l’l

)

S e Ben BUo Mt Bao At B Bh Al el an el el daf ol dab il dnd Aol Aad Ml hel Sod Aok hoh el Salk Ak heb haf Bl laddal iAo el Ao) AL A Ao e b A Sl Al L AL AL bRl

" T
;

4

k Maximum Expected Gain

%ﬁ I expected this thesis to break new ground in the area of
%. testing Ada’'s Chapter 13 features. Many are hesitant to use
& Ada because it is an immature language, and few want to take a
wé risk on unproven features in the language (Myersa, 1887:71).

fl This thesis should remove some of the uncertainty surrounding
E; Chapter 13 features by providing sound tests for the validity
;f and performance of thosgse features. Thig work is immediately
gﬂ useful to developers of embedded applications in Ada, as well
?' ag to those who are developing Ada compilers that will

& implement these features, because it provides a method for

: testing the validity and efficiency of these features before

§ they must be used. Finally, the AVF expregsed an interest in
‘? the results of this thesis in developing new tests for the ACVC
;\ test suite (Chitwood, 1987), and some of the validation tests
A

;: written in this thesis were incorporated in version 1.10 of the
33 Ada Compiler Validation Capability test suite (Brashear,

- 1987b) .

-

:E Sequence of Pregentation

:. The theory and method of compiler validation and

g‘ performance evaluation are gsummarized in Chapter 2. This

?g chapter also identifies some of the deficiencies of previous
. methods in these two fields.
i% The design of the validation and evaluation tests

?
ﬂ; developed in this thesis is preasented in Chapter 3. This

° chapter describes the tegt requirements, juatifies the

¢ ! O 40 s) 1 TSR BTN »
i ‘i‘. A“;'u' "yt “9 AN e n’v‘o' 0 ‘u‘ ‘a' X '0‘ T .'l’n l‘; R oI " ' l X X “' ,l ¢

D S Rt Ao At sl B & o Ale Bog Boa Sa A B b o B A B ol Sl Bl A g A B Ak £ B 8.4 Ak Ak Sl Ak ol Aol Bk 8.4 Bl St dat Salt Sl Sol Yol Sl Aol Aak Aol St Sl Aal fal dal Sat Ret ek et
"]
"

L 4

o

R

N requirements, and gives a general approach to test design that
D)

Q& fulfills these requirements.

v

& Chapter 4 deacribes the detailed desgign of the tests.

‘ﬂ Chapter 5 details how the tests were certified and reports
3

[/

;* the results of the Chapter 13 feature tests.

K The conclusions of this project and recommendationg for

0

)

.g future research are presented in Chapter 6.

o)

)

:o"

S

.’.‘: .y Ly

LA O] ™) Wi o
‘:'v‘f'-'!'c' R TRIOOIRN ‘n"'v’ n‘ "ot It 'a‘ ih n“'o'. o, c':'n'.' ' ‘c’ ‘a':'t’ ‘l' ‘t‘ *" “l' l' 'l' "' e, i'.'l""‘ Wt ey "c i‘ 'r« A) “i l' ."il" " OGN ‘l‘ it

2 Aan £ o0 Mok Mok a i Aot sl ol sl ek b o ad o g s i A ACe ARe Ata Abhe 824 Ala fia Ate Ala dba Ate-al.hle bde el tat bl Sad dad ek Sk Bel el Bek Bek bl bl dad Aok hal ek Aal Aok J "MVT

II. Literature Survey

The development of tests for correct and efficient
implementations of features of the Ada programming language is
guided by two of the most important disciplines of compiler
ana.vsls: wvalidation and performance evaluation. This chapter
will review current theory and method in these two areas and
relate them to the problem of testing representation clauses

and implementation-dependent features of Ada.

Compiler Validation

One of the major design requirements for Ada in the early
stages of its development was that the software developed with
Ada and the programmers trained with Ada be portable
(Ploedereder, 1986: Ch 7, 1). All too often, pre-Ada software
had to be extensively rewritten when moved to another computer
system, and programmers had to be trained in new programming
languages whenever they moved. Although standards exist for
languages such as Pascal, JOVIAL, and COBOL, past experience
had shown that software was often developed using a
non-gtandard or extended-standard compiler, making it very
costly to move an application to a new computer because of the
differences between the old and new compilers. This is one of
the primary reasons that no subset, extended, or non-standard
Ada compilers are allowed (Ploedereder, 1986: Ch 7, 1).

The Ada Compiler Validation Capability (ACVC)
Implementers’ Quide "deacribes implementation implications of

the LRM and conditions to be checked by validation tests”

10

DO O
i ' .?‘l.t'r‘!’ﬂ"-‘|."t‘t'.“'l‘t“'!‘l.l.l'-.‘|l"0

= g

a3
l’i'.'

-

32X
&

-

ARSI
‘.rl‘ P '-" P,

Yo

Y ¢

RERG L
r] I3 4

Pl

- '._‘,",-:4- . L “') r..

el 2

.

.-.-\-‘- . o - gy
?;,.1‘, PR A 5" ,,. 2

=2 NT
AR =7 5,

@
.

(Goodenough, 1986:Ch 1, 1). This guide provides semantic
ramifications, legality rules, and AJPO-approved
interpretations of Ada constructs as well as test objectives
and design guidelines for all validation tests. Although test
objectives and design guidelines have been written, only a
subset of these have been turned into working validation test
programs (Wilson, 1987a).

The 3100 tests in version 1.9 of the ACVC fall into the
following classesg: (1) Clags A tests engsure the minimum
allowable set of the language is implemented; (2) Class B tests
determine whether a compiler can detect illegal uses of the
language; (3) Class C teats are run-time tests that should
compile and execute successfully; (4) Class D tests determine
the capacity of the implementation of the language constructs,
such as determining how many levels of loop nesting an
implementation will support; (5) Class E tests determine
whether implementation-dependent attributes of language
features have been provided for; and (6) Class L tests
determine the compiler’'s ability to detect link-time errors
(Wilson, 1987b). A compiler, however, does not necessarily have
to implement all of the features in Chapter 13 to pass these
tests. For example, the Ada LRM states: "An implementation
may limit its acceptance of representation clauses to those
that can be handled asimply by the underlying hardware” (DoD,
1983: Ch 13, 2). Becauze certain Chapter 13 features are
considered optional and because initial ACVC emphasis was

placed on testing the mandatory featuree of the language, early

11

-

"
(A

e . i . : e A e AR
4 L - g A WY W UML) (L]) AnA) UML) AN
i \!“.-"'.-"..:" ?-:"."' AL EARANDS !'.“u!".!'~.:"n""' DN .t".e'l.i"..‘"’0".*".‘*‘."“.!!“ HADAINI t".\?‘»"l."

3 Wt

W,y

L L A}
pol

S AT,

» o B
OS>y,

n -
M

SEE NP ST W

B

<

e,
Ir“.‘,

P

o
-
-

%‘
Uey

O

3
Sl

{‘
e e

o
3
o ‘1',’
'Y
Wy

L)
.z %,
+. Vg

W
OO YR

e,

n .

versions of the ACVC did not include tests for features in
Chapter 13 of the LRM, even though some such features, such as
package SYSTEM (which defines characteristics of the target
computer) must be provided by an implementation (DoD, 1983:Ch
13, 9).

Also, because Ada compilers are currently validated with a
test suite that tests only a subset of the language (Wilson,
1687a), a validated compiler could have an illegal
implementation of some untegted feature. For example, a
compiler that has an incorrect implementation for address
clauses (one of the Chapter 13 features) could be validated
with the current (version 1.9) or previous versions of the ACVC
test suite because these versions did not contain tests for
address clauses.

Finally, because the ACVC test suite makes no inferences
about the relative efficiency of one compiler versus another
(Wilson, 1987a), compiler validation cannot be used to
determine the suitability of a compiler for a particular
application (AJPO, 1987:1). The Ada compiler validation
procesa has discrete results -- either a compiler pagses all
applicable tests and is validated as conforming to the
standard, or it fails at least one applicable test and is not

validated.

Compiler Performance Evaluation

Compiler performance evaluation, or benchmarking, is an

outgrowth of the computer benchmarking field. Computer

12

¥ «1-,--.

Ak

L NG o e ® e e LR
) " (s ' R M P AN AN N
] ‘.l oy "l “‘ ! ""l‘\.l l.vil'.. h l.n .‘l...l (W 'l' .:‘i‘n.i'a.l'o ", '|'¢“) "*l' % W L% l'l 1%, l." "‘) l' 0" L A O T !

LGN

B '.\

g

g% benchmarking techniques developed in the early 1970s, as

;ﬁg : potential purchasers of large computer systems searched for a

!$~ tool that could provide an objective measure of a computer'’'s

ﬁﬁ processing power (Benwell, 1975: vii-viii). Performance

.Ei‘ evaluation programae, or benchmarks, were developed to measure a

Eg computer’'s processging power by measuring the computer’'s

E*j execution time for a representative set of computer

E': instructions. The basic approach in benchmarking computers is

& \) to hold all other factors (such as computer programming

§ . language use, number of iterations, etc.) constant in a

&\ benchmark execution, varying only the the computer being

:5 benchmarked; thus any difference in test results may be

.EG attributed to differences in the computers’ execution speeds.

;jg This same method may be applied to benchmarking compilers.

if: There are three approaches that have been used to evaluate

:gs the efficiency of Ada and other high order languages (HOL=)

;i? uging the metric of execution speed:

,Ti. writing (1) a set of small well-established numerical

s benchmarks, (2) a sample of representative programs

3,& from the application domain, and (3) a synthetic

.G» benchmark in Ada and other high order languages,

‘as viz., FORTRAN and Pascal, and comparing the resulting

compilation and execution times (Bassgman and others,
1985:151) .
Numerical benchmarks were originally developed to benchmark
scientific computers whose primary functions were floating
point mathematical operations. Because such benchmarks do not
typically use the more modern constructe, such as tasking and
access types, of a language such as Ada, they cannot accurately
evaluate these features (Weicker, 1984:1013). Application
13

™ pab has gy B

ﬂ,
LAY

u

;i
-~ ey

LR @ v
- »
.'_:.‘ ®

4

AL AN
.c".q".o'l.o'i i".Q".l l,q".o

TP

domain beanchmarks are application programs that have been
modified to include code for reporting performance of the
program (Craine, 19886:13). Because compilers targeted to
MIL-STD-1750A computers have so far implemented few of the
Chapter 13 features, applications using these features are
generally unavailable. A gynthetic benchmark includes a
balance of instructions that is typical of the general use of a
computer language, based on a statistical analysis of a large
number of applications written in that language (Bassman and
others, 1985:151).

While these three approaches provide comparative
information for general-purpose (non-embedded) computers, they
do not give quantitative results that can be used by the
compiler implementers and userg concerned with the effects of
specific language features, because the resultsgs are distorted
by the effects of other language constructs used in the
benchmarks (Bassman and others, 1985:151).

To benchmark the performance of an Ada compiler and that
of another HOL such as Pasgcal (or another vendor’s version of
Ada), another approach that may be adapted to embedded computer
systems includes:

(1) Programming test cases for fundamental language

features in Ada, the HOL, and assembly language; (2)

Writing test cases for code improvement in Ada and

the HOL; and (3) Programming representative

applicationg in Ada, the HOL, and asszembly language

(Bassaman and others, 19085:183).

This approach is suitable for benchmarking compilers targeted

to embedded processors because it provides ‘detailed knowledge

14

AT . 0400 vl
ﬁﬂ“ﬂ“ﬂﬂmﬂﬂﬁwﬂﬁMMﬁMﬁMJﬁhﬂ-wﬂﬂww‘ﬁmﬁ"“ﬁ"oﬁﬂﬂwoh“

¥

o,

W

[)

-
L 4
&

\

K)
‘h of the performance of individual features” (Clapp and others,
.0'
1& 1986:767; Bassman and others, 1985:155). In this approach, the
!
; benchmarks are designed to measure the execution time of

Y specific language features by isolating the feature in a test
X loop of the benchmark and determining the difference in

t
¢ execution time between the test loop and a control loop in
[\

’ which the feature is not uaed (Clapp and others, 1886:767).

&

K This approach will be referred to as the °"dual-loop approach’
. in the remainder of this thesis.

; Because of the limited memory available to and real-time
%

k processing requirements for embedded applications, two of the
4

- primary requirements for benchmarks for Chapter 13 features in
.

) embedded applications are that the benchmark measure the

t feature’'s memory use and execution speed (Phillipe and

. Stevenson, 16084:4.100). With respect to memory requirements,
- the MIL-STD-1750A computer with the extended memory option now
f allows an application to address up to one megaword of memory,
N although only 64K words each of data and instructions may be
Qf accessed without changing page registere (Bunce, 1087). As

f long as program units (such as tasks) can be designed so that
:\ they stay within a 64K boundary accegsible within the logical
L

2 address space, the application does not guffer from excessive
-'»
\; page swapping (Bunce, 1987). New embedded applications being
<
X developed for MIL-STD-1750A will most likely use the extended
3 memory option, lessening the size regtrictionsg on those

N
. applications (Lyona, 1987). One researcher further found that
4
" the arguments againgt using Ada for applications targeted to
K
K

]
" 15

"'\‘."ﬁ‘ * w0 ade o) !-1 - .%“.’*.."..F- , . "*- AL ‘ - ‘. ‘ Ny
RO KK AN R o Lo T B R R K O KN KA

L aac Sad Sad dhel Bad Shal el dad aad fSod dai Sad Sl Safl St ok Bal lad Lol Nal Sk Aol et fhah Mall B Mok Sl Aok ot Sofh il Aol Il 2had AL A £ 0 A A Al 4 A S A A S A S A A e Rie Ahh A Rid. A

the MIL-STD-1750A computer because of insufficient memory were
based on worst-case scenarios instead of the class of
applications more likely to be found on embedded systems
(Roark, 1987b). In fact, embedded real-time applications
researchers and developers interviewed in this research were
able to work around memory limitations or found that their
applications were not limited by the larger memory available
with the extended memory MIL-STD-1750A (Clements, 1987; Roark
1687b) . Neverthelegs, embedded systems benchmarks sgshould still
addresa memory usage as a concern.

With respect to time requiremente, although research i=s
currently being conducted to develop faster MIL-STD-1750A
computers using Very High Speed Integrated Circuit (VHSIC)
technology, this technology may not be available in time to
solve the more pressing timing restrictions currently placed on
embedded applications (Pitarys, 1987). Furthermore, history
indicates that time efficiency will remain a concern even 1if
much faster processors are found.

Currently there are two major gets of performance

evaluation software available in the public domain: the SIGAda

PIWG benchmarks and the Prototype Ada Compiler Evaluation

Capability (ACEC). The SIGAda benchmarks are a collection of

LS R

)
b

gy
P A

benchmarks that use the dual-loop approach to meagure the

’? execution time associated with such constructs as task creation
v
:3 and elaboration, exception handling, package TEXT_IO, loopse,
"‘.
>,
~, procedure calls, various task design styles, and packed boolean
xf arrays (PIWG, 19887). Except for the benchmarks that measure
-,
:j
e
‘- -
‘i’ 16
oo
L,
KR
o’
L

.....

W - AL A e R R R e R TR R T T At AN A AR
WG Ve Ce Ve LTy, ; : . > It O O) OB S JON
"’. o t.""nf"at"':"»’ X 9-"-"5,"’."':‘!': fate st W !l:‘"o‘!'l‘! e eplerleatind A%, .M?. W :'l" NS HNNY ~'!‘!‘ A,

(S

'uﬁ

ot

:£ the effects of packing boolean arrays, none of these benchmarks
Fﬁ measures any Chapter 13 features.

ST. The prototype ACEC benchmarks are a collection of

Y)

':% benchmarks from the public domain, organized for the Evaluation
LS

:;L and Validation team of the AJPO by the Ingtitute for Defense

:4 Analyses. These include numerical and synthetic benchmarks

wh) that measure the execution time associated with tasking,

" S
IS

»]

procedure calls, loops, case statements, recurgive callsg, and

e global variable access, among others. The prototype ACEC does
.EE include benchmarks for the use of Chapter 13 features,

Ei including measurements for unchecked storage deallocation and
:x mathematical operations on objects declared with a length

EE clause (Witt, 1985:90-93).

5

{J: Other sets of benchmarks available are those collected on
;iﬁ the Ada Software Repository (Conn, 1987:130) which include

!E: numerical and synthetic benchmarks from the 1985 Los Angeles
.Ei ACM AdaTEC conference; other numerical benchmarks such as

C

Whetstone, Dhrystone, and the Sieve of Erastothenes; synthetic

4
AR

benchmarks to measure tasking overhead; and finally, a copy of

‘.\

the ACM SIGAda PIWG benchmarks. These collectiong do not

P

4

contain any new benchmarks for Chapter 13 features beyond those

[d
)

described previously in this chapter.

I. l,,
el

&
R I

.{f

A 2 .
s

17

* B)
LA NORTRERERLS

-
-
AL b

-

-

v

- - . . Te"p - - - el .-, . . ”ow p » . Oy W
P P T o BT L ol oY, o o LA S s e A 654 7o R O T O
o ‘ _t’.l AT G P S P oot " .".\ a"-.ﬂ. il "‘I'pi‘on'm' IG5 !ii.i“.t'l.l.l"..'I‘C'Q.I'c.l';“. "O'.‘n' SR bt

4
y

ra

‘-

—————
PCalat™

-l

NG

S e a2

it « P
"- l.’(}L

bee

A e

s

1I1I. System Design of Chapter 13 Feature Tests

This chapter identifies the Chapter 13 features chosen for
evaluation and describes why they are more important to
embedded applications than other features. The requirements
and justification are also presented for the design of a gystem
of tests and procedures to validate and evaluate Chapter 13

features.

Identification of Chapter 13 Features for Testing

Recall from Chapter 1 that the purpose of this research
was to expand the current velidation and performance evaluation
techniques to develop tests to validate and evaluzte the
features of Chapter 13 most important to embedded
applications. This section describes the Chapter 13 features
that were chosen and explaing why they were chosen.

Because there are currently very few Ada compilers with
full Chapter 13 implementations available, most of the research
to identify the Chapter 13 features important to embedded
applications developers was conducted through interviews with
those developers. Some embedded applications developers
interviewed stated flatly that they needed most or all of the
Chapter 13 features for their applications (Roark, 1987; Shaw,
1987; Lyons, 1987). Others were able to prioritize the ﬁeed
for implementation of certain features based on their knowledge
that they currently used (or would soon use) the feature in an
application, or conversgely, that they would not use a feature

(because they had no need for it, the feature wasa too risky to

18

R el 2ot da. ob sl Bad M ¥ Bal mad ek 4 b ma¥ stad Bad atat Sl aabl ek Maw Bkt Bk Sad Bl Sheb Ak Sl Sal At £ 4 AR Aad g s dn A A A A doa Rta hta Athe Al Ala Qe Bta Ria AR da Ale Kie Al

23 Ay
4

;a use, or the capability could be provided in other ways) (King,
I\

S : 1987; Bennett, 1987; Seward, 1987). The lack of production-

4

quality compilers targeted to MIL-STD-1750A computers still
forces developers of these applications to use a mixture of

Ada, assembly language, and JOVIAL (Bennett, 1987).

"l

In these discussions with embedded applications developers
and compiler designers for those applications, then, the

features that were identified as most important were Address

i P i

Clauses and Interrupts, Record Representation Clauses, Length
Clauses, and Interface to Other Languages.

Address Clause and Interrupts. Ada's addressz clauses

& allow a developer to specify the memory location (or address)
at which a variable is to be stored or at which a subprogram or
package is to begin. They may also be used to link an

* interrupt to an Ada task that will handle the interrupt (DoD,

) 1983:Ch 13, 5). These features are vital to embedded
applications, especially those that seek to minimize the number
of assembly language routines included to perform low-level

C operations. It is the nature of embedded applications that

certain operations, such as reading data from pre-determined

Input/Output (I/0) ports, must be tailored to the configuration

of the hardware. Because decisiong regarding the physical

location of registers and 1/0 ports on the underlying hardware

_-,
5N a Ky vy A

are made long before software is developed, software must adapt

) to the hardware. For example, the device that determines the

Lofhray

e airspeed of an aircraft may be physically connected to an 1/0

- port at memory addregs 2000 of an embedded computer, so data

16

Q

T R T TN TS oI oy % b . OOV ARy
‘l!'?n.' 0." DA ETAE A DR 4 T A SKENS ‘.h n.ﬂ D0 b RO, .'.“tn o, "'. “l"‘h‘. RRDORIHN oty

from the device must be read from that location., By gpecifying
that the variable that will contain the information be loaded
at that address, the data from the device can be read from the
variable. If this feature were not provided, an application
would have to make a call to an assembly language or JOVIAL
routine to retrieve the data from address 2000.

Another feature that i8 closely related to address clauses
ig Ada’'g interrupt handling feature. An Interrupt is an event
during the execution of a program that indicatesg an error in
the hardware or software has occurred or that sgignalg that some
device attached to the computer needs service. The interrupt
notifies the Central Processing Unit (CPU) to suspend its
current operation and take action on, or handle, the event that
caused the interrupt. For example, an I1/0 interrupt may signal
the CPU that data is ready to be read from an I1/0 port. The
CPU, in turn, handles the interrupt by moving the data from the
I/0 port to main memory. Many embedded applicationsg, such asg
avionics, are typically iInterrupt driven (DoD, 1982), i.e.,
interrupts (rather than polling schemes) are used to indicate
when I/0 or hardware devices need service (Bennett, 1987).
Since Ada was designed for embedded systems (Booch, 1987),
providing a capability to handle interrupts is8 crucial. Ada’se
interrupts feature allows applications to handle aaynchronous
interrupts by assgociating a task entry with a memory location
that contains the interrupt vector or the number of the

interrupt itself. When the interrupt occurs, the associated

-
"
1

%
3o

AT,

'*,k.

Bt

f
A]

task entry is called and the interrupt is handled by the body

of the task.

Record Representation Clauses. Record representation

clauses allow the embedded applications developer to declare
and use variables that represent low-level values normally not
accessible with other high-order languages. A common example
of this would be to use the record representation clause to
declare a record representation for a computer’'s program status
word (PSW) (DoD, 1883:Ch 13, 6; DoD, 19082, 11), in which
information about the state of the CPU and other devices is
stored in specific bit positions. The capability to access the
PSW can be vital to an application because its values often
determine the sequence of future operationg in the

application. Without record representation clauses, an Ada
application would have to incorporate a number of assembly
language routines to retrieve and decode information stored in
registers such as the PSW (Seward, 1987).

Length Clauses. Length clauses, like the features

described earlier, allow the developer to tailor his
application to the underlying hardware. They take advantage of
physical characteristice (such as word length) to define for
data types more efficient representations than the defaults
(DoD, 1983:Ch 13, 3). Because of the execution time and
storage gpace requirements placed on many embedded
applications, length clauses are thus necessary (Seward, 1987).

Interfacesg to Other Languages. Because embedded

applications in Ada still currently need to call asgsembly and

21

1

T,

&
»
r 3

¥ P

’--
N

L YNT

s b r ST
e X WY '-', o .,n'. ol l‘.‘l' Wt ,‘l‘.,l ,, \ 'n'.\ ,,A‘g:u‘.,u’ 'a‘«‘u‘ .}A‘ ity m W ."'i‘ QOISO n',

N T T e T T T T IRV R TN TR SR TN T PRV IR UE O UWNUWILTE (TR LW U W TE T LW W) T A el

JOVIAL routines to perform certain low-level operations
(Bennett, 1987), without this feature, Ada could not now be
uged for embedded applications.

Other features in Chapter 13 were not studied because they
could be worked around more easily or were too rigky to use in
embedded applications (Bennett, 1687; Roark, 19887; Seward,
1987). Change of representation, a feature that allows the
developer to Bpecify an alternate representation for a data
type, was not studied because its function could be provided
(albeit less efficiently) by explicit type conversgions and
declarations of additional data types. Machine code Insertions
allow the developer to place assembly language instructions
directly in a procedure, but the same result may be obtained by
calling an assembly language routine with the interface to
other languages feature. Unchecked storage deallocation, used
to free for further use memory that had been previously
dynamically allocated, was not s2tudied because the developers
either do not have the high confidence in the correct operation
of the feature, or cannot make the required determination of
the maximum dynamic memory requirements, or both. (Bennett,
1687; Seward, 1987). Finally, unchecked type conversion was
not studied because it would not be used as often as the other

features identified for study (Bennett, 1987).

Validation Test Requirements/Design

The primary design requirement for the validation tests

wag that they determine whether a compiler complieg with the

22

J 0 Q
(e D .0 LY l l..to.g.l‘gll.g".. ‘Q...o"p' .v

TR

e

-~

e
§S Ada LEM (AJPO, 1987). This requirement is expanded in the ACVC
l:f Implementers’ Guide (AIG) (described in Chapter 2) in specific
!“ design guidelines for tests for the entire Ada language

'

ﬁ (Goodenough, 1986) . In particular, Ada validation tests must
? clearly state their objectives, identify the language feature

being tested, and generate specific information on whether the

-

compiler passed or failed the test. For such generation, my

s

validation tests used the standard ACVC test reporting package

N - -

REPORT that wrote the results of the tests using Ada's package

A
.E: TEXT_IOZ. The reasons for this were twofold: by designing for
% re-usability of existing software, I was able to spend more
::L time developing and testing my design; and this approach made

"ot
‘af the tests I developed reusable by organizations such as the Ada
;ﬁ Validation Facility (AVF). The validation tests were likewise
) categorized according to the gix ACVC test classes described in
OE Chapter 2.

ot

j While validation tests provide only a yes or no answer for

b.

implementations of a Chapter 13 feature, these tests are a

p? prerequisite for evaluating the performance of the feature. An
L}
)..
m efficiency test comparing two compilers may have no meaning if
()
,q: one of the compilers being tested has an invalid implementation
D
'3 of the feature in question.
"'_’
.ﬂ“ A compiler either implemented a feature correctly and

e

.5 passed all validation tests, or it failed one or more of the
v,

5:

{Z 2 TEXT_IO can be used for this purpose, because all Ada
S compilera must implement TEXT_I0O to pass a compiler validation
s (Wilson, 1987a).

23

N
)
%

[B

4',

AT
“

R s A
LN '-. .n‘ |0 Nx .'.'aﬁ vo'ﬁu‘. UM UM MM BN W o X LMCH MO M R

q mw

00 I
W, ',o""".o .0:'.0 .o‘t.t" KN

&

ST

:--’l ;‘. Ay By

-~

¥

-l .

«,
o

il
o W% 1% 3%

N a ey
.

) :".e, W
L Y l.. .'I.I.,O .

tests and was ruled non-valid. Therefore, statistical methods
could not be applied to the validation tests to determine their
validity. The validity of the tests was determined insgtead
through reviews of the tests by ACVC test developers in the Ada
Validation Facility and at SofTech, Inc. These two
organlizations are responsible for the development and
maintenance of all tests in the ACVC test suite (Wilson,

1987b) . These reviews, identical to those conducted to certify
ACVC testes, ensured that test design objectiveg were fulfilled

and that the tests contained no obvious errors.

Performance Evaluation Test Requirements/Design

The two metrics described i1n chapter 2 that were used to
determine the efficiency of Chapter 13 features in embedded
applications were memory use and executlon speed. Additional
requirements for benchmarks for these language features are:

1. The features to be measured must be isclated and

compiler optimizations that would invalidate the
measurement must be avoided.

2. Sufficient accuracy in the measurement must be
obtained.

3. Operating system distortionz must be avoided.
4. The results obtained must be repeatable (Clapp

and othere, 16886:760-761) .

As the research progressed, it became apparent that the
time metric was more important in determining the efficiency of
Chapter 13 features, because the MIL-STD-1750A extended hemory
option allows an application to addregs up to one megaword of
memory, reducing the space constraints on many embedded
applications. Therefore, this thesig concentrated on

benchmarkse that measured the execution time associated with the

24

R R P O P R P o P AR P P N Sy . Ty - - ¥,
‘-_',.\.-p ST o e G e 5 TR Lty HER LS

-
X
.. LA L LR AN > A0 LA AN TEL L LA AR Ui e .t.".

- .
Sl MO

LN

afaf e

use of a Chapter 13 feature as a metric for the efticiency of
that feature's implementation.

The design of a test of the performance of a Chapter 13
feature was based on the "dual-loop” method of Clapp and others
described in Chapter 2. This approach concentrates on
measuring the effect of using one feature and meticulously
negates all other factors that may affect the timing results.
This ig the best method for determining whether a compiler’'s
implementation of a feature is guitable for an embedded real-
time application, because it alone (as stated in chapter 2)
provides specific comparative information about the effects of
the use of that one feature. Furthermore, it ig8 the same
method used in many of the benchmarks in the ACM SI1GAda PIWG
test suite (PIWG,1986). By reusing PIWG software for timing
measurements, data collection, and test reporting, I had more
time to develop and validate the tests for performance
evaluation of Chapter 13 features. Numerical, application
domain, and synthetic benchmarks were not used because they
could not provide comparative measures of compiler efficiency
for specific language features.

As desgcribed in Chapter 2, benchmarks for Chapter 13
featureg had to meet additional requirements. The Jisolation of
the test feature was accomplished by writing two parallel sgets
of executable operationg, one set that used the feature and one
that did not. Each of these sets was placed in an identical
loop 8o that the only difference between the two loops was the

uge of the feature being studied.

25

PR AN

| \‘):,‘;‘ '{ R

y
L 4
J
Avoiding compiler optimization of the testsg is critical
because optimization can radically alter the nature of the
v
% test. Consider the test loop in figure 1.
»
X Test_Start_Time := Current_CPU_Time;
[\
K For I =1 to 100 loop
Pl Test_Variable := 10;
& end loop;
»
ﬁ Test_Stop_Time := Current_CPU_Time;
’ Test_Total_Time := Test_Stop_Time
- Test_Start_Time;
J
o
&
; Figure 1. Benchmark Test Loop
! The objective of this test is to measure the time it takes to
5 perform an assignment statement 100 times in a loop. The
- Test_Start_Time and Test_Stop_Time variables take time readings
: before and after the loop from the function Current CPU_Time,
)
and the total time for the test is determined by their
a difference. Because the value of Test_Variable will be 10 no
h matter how many times the loop is executed, an optimizing
s
KA compiler may generate executable statements that will perform
: the operations shown in figure 2. In this optimized version,
’ the assignment has been moved out of the loop by the compiler
>
{ to make the program more efficient. Some compilers may even
: remove the loop entirely, replacing it with the Test_Variable
" assignment statement. The segment of code in figure 2 has the |
‘o
: same logical result (i.e. Test_Variable is set to 2) asg the
o
.: segment of code in figure 1, but the results of the execution
,! time measurement may be very different.
: 1]
7
{ 26
i
q

'- J\

. - — .,’.. 'if' Ny - ;- ~-‘- "o ’(A‘ g -f * ..".",‘\"' "\".‘n'{'l‘ll“ 3 A\ \','r ,‘; ¥
N W e .o“..:"'-‘ S AM Gt l’t‘t‘?"o“.‘n.":..‘ SNV N " . LGOI O NN ',"?"

s
-
J

i o o g
‘ol
’

L

-

P

-
) a5 o>

Test_Start_Time := Current_CPU_Time;

P e |

For I = 1 to 100 loop

n
? null; -- Do nothing in the loop
- end loop;
o .
W Test_Variable := 10;
[}
N Test_Stop_Time := Current_CPU_Time;
L= Test_Total_Time := Test_Stop_Time
o - Test_Start_Time;
b \.r
[} 'ﬁ"
s/
g‘ Figure 2. Optimized Benchmark Test Loop
J
h Y
o Some compilers allow the user to control optimization by
v
)\
N setting a parameter for the compilation, instructing the
]
"3 compiler to perform no optimization on the ingtructions.
)
24
.5: Another method is to keep the values of objects in the loop
).’
%? hidden from the compiler by placing them in a procedure that is
[compiled after the test program. This method was used in this
-
- .
5 thesis because it ensured no optimization, whether an

51
!

optimization control switch was sget or not.

-

1%

The accuracy of the time measurement igs a function of the

-~
\.
~ resolution of the clock available on the computer on which the
o
JV benchmark is run. A benchmark that is generic enough to run on
a;¢ a number of compilers must use the Ada CLOCK function in
AR
L~
:z: package CALENDAR, because it isg the only function that all Ada
L4
4
':i compilers must implement that returns the current CPU time of
(7
.;p the underlying hardware (DoD, 1983:Ch 9, 11). Such use of the
.
?: Ada CLOCK function presents a number of timing anomalies that
o
_:i mLat be accounted for when designing a benchmark: insufficlient
9.
.~
k>”
s 27
o
v
@
-
o

¢

- .

AT ATAT LA Ce e T
WG ET N R 6 Y O iy

O A Y o o T A e O I A v p K e e RN L
» et o~ s W ‘ AN g Ta ORI
.l'?‘."'o“"u'hJ.'-"'o' N '....l LX) \" \"‘u' aN) .'.I" b“'r}"u'..".‘-"‘t“.a '.-‘ .J"o' "' JOMU NN e 2 -’s ™ o o

) Bk

4 o W TN WU Y Ul WW W Y W NN RN IR ET I T T ETNErTETIRTTETERNTW L TT TV ity T T L T T TS T T LT e W T LU EUVEUWUTUTRUTRVRYVETERERET JTWEY .

et

L 4

&

;R clock precision, variations in the clock, and clock overhead
P)

K (Altman, 1987:11-16).

{J The CLOCK function in Ada does not provide a continuous
:sg repregsentation of time: rather, it expresses the time in

‘54 increments t, with t defined by the value SYSTEM.TICK (DoD,
;f; 1983:Ch 13, 11). The execution time of a benchmark therefore
‘:; will always return a time of some integral multiple of this
% increment, n % t. Because the actual time a benchmark takes to

' o

S execute may not be an exact multiple of t, the actual time will
o)
'i; lie between n % t and (n + 1) # t. The smaller n is, the

;E larger the variability of the benchmark's results. By

': increasing the number of the loop executions, this variability
3; can be reduced and a more accurate time for the effect of the
L%E feature can be produced by averaging the time for one execution
g {loop) of the benchmark (Clapp and others, 1986:762); this was
EE the method used in this thesis.

.E In the course of this research, I found that the CLOCK

L

function did not return time values with the precision

-

4
fj necessary to measure the events associated with the features I
H_'

iﬁ was studying. I then wrote package TIME_PACKAGE_1750A, which
o
i includes procedure GET_ALL_TIMES, desgsigned to retrieve the time
LY

{j from the hardware clock registers of the MIL-STD-1750A
A
:|§ procesgsor. Thia package and ite development are described in
0.
X detail in Appendix F.

o

.

:: Although GQGET_ALL_TIMES returns CPU times with greater

\.-I

:: precisgion than those from the CLOCK function in package
o CALENDAR, it too is affected by the discrete-function timing

\
W
o 28
R

5

o

-,
L)
". oY) T " s '5.'\.'-' ¥ ;P. """ - ‘».-'w. iy 2y "‘
N e :'0'.‘.0.:.!'. W, '..!'.'l‘h M 'q, min 'v M K e "h ‘ “! 0. h“lh T NMDAARN '-‘ ';‘.‘e 'o"lv"#“ ‘*'n"h"!. "' ‘ A 'l"'c h"

=
.l'll py
Lo
b
L#
d

-

&

}}: anomalies described above. Furthermore, a clock may drift, or
if; gradually run slow or fast compared to an ideal clock; or a

: clock may jitter, speeding up or slowing down briefly, but

,;é remaining accurate over longer time gpans (Altman, 1887:12-

;2 15). Without performing tests on the computer hardware with

i. another clock, one cannot detect drift and jitter but should be
FS aware that they may occur. Jitter in a clock will tend to be
RS

Bty 2x *e

offset as the number of loop iterations increasges and longer

o~

time spans are used to record the results of the benchmark.

!

o One approach to negate the effects of drift is to repeat the
N
,: benchmarks a number of times, g0 that the drift of a clock

:{ would apply equally to the test and control loops of a

a9
3 n"
o benchmark, still providing a comparative measure of compiler
'ﬁi performance. The alternative to this is to measure the drift
R
3 of the clock with tests on the computer hardware (e.g.,

%

hﬁ connecting an external clock to the computer and measuring the
.j; differences in the two clocks), or to use an external clock to
}2 record benchmark timing data (Altman, 1887:16). Detecting the

?

g drift of a clock, 1if it existed, was beyond the scope of this
.~l
’;{ thesis. The benchmark executions were repeated, however, 8o
’, that if drift were present, itas effect would be negated as

described above.

’ﬁf Overhead in the GET_ALL_TIMES calls was negated by making
:!{) identical calls for a test and control loop in the benchmark,
f so that when the elapsed time was calculated by subtracting the
g; clock start time from the clock stop time, the overhead
. 29

{.
r,

’I
L,

L

O
s

R

Sal 2ui Buk Lol had 1ah Sad Aas Bos Rod aad ah Sad Lol Saf Sad Aok bl ok Sad Mok bel Bl i dad A Bl A B b i A BT B A i AR ACA AL B A A A A et R B A aNEL DML BEI ARRC AR A SRt T

-~

S

,.;rx
NN

2

:\ introduced by the GET_ALL_TIMES call was eliminated (Altman,
o

" 1987:16) .
L
L As a mechanism for verifying that the GET_ALL_TIMES
1

f} procedure was providing an accurate measure of the time

-:\-

- required for the test execution, GET_ALL_TIMES and the Ada
I

» CLOCK function were used to time identical loops that performed
yit

:x an assignment, addition, and conditional (Jf-then-else)

.?: statement. Techniques for control of optimization, described

eariier, were used in the design of the loops, thus the

: execution times should have been identical. Two geparate
. programs were written, identical except for the routine used to
°
v retrieve the current CPU time. The programs executed the loop
.- 30,000 times and were both executed 50 times on a Sperry 16313
tf MI_-STD-1750A. The elapsed loop time was found by subtracting
the cverhead of the CPU time retrieval calls from the elapsed
lozp time. The resulte are reported in table 1 below.
- Table 1
D) GET_ALL_TIMES and CLOCK Execution Times
:Qi Standard
e Time Retrieval Mean Deviation
- Program (seconds) (geconds)
d
(]
o GET_ALL_TIMES 0.55158 0.00028
S Ada CLOCK 0.52510 0.00317
s
®.
= Use of this processor does not necessarily indicate the
O compilers studied in this thesis. The Sperry 1631 processor
e executed test programs compiled with at least three validated
.ij Ada compilers targeted to the MIL-STD-1750A during my research.
»
- 30
NN
-
o~
@
o
v
B g B e T g Rt

The variability in the results may be attributed to the reduced

precision available with the CLOCK function. Package CALENDAR
reports all times using a fixed point data type name DURATION,
which stores time data accurate to 200 microsecondg. The
GET_ALL_TIMES procedure can retrieve and gtore time data
accurate to 10 microseconds. @Given that GET_ALL_TIMES reports
current CPU time more accurately and precisely than the
function available in package CALENDAR, GET_ALL_TIMES was used
in the remainder of the research for CPU time retrieval.

The third additional requirement of the dual-loop method,
eliminating operating system distortion, is8 not a major concern
with the MIL-STD-17%50A computer. This requirement was included
principally for time-sharing or multiprocessgsing systems in
which other processors or system functiong may interfere with
the operation of the benchmark (Clapp and others, 1986:763).
With the MIL-STD-1750A, such distortion was eliminated by
running the benchmark and nothing elsgse on the computer.

Finally, repeatability of test results was provided in the
design by making no assumptions about pre-conditions for the
benchmarks. The benchmarks were degsigned to run alone on a
MIL-STD-1750A, therefore all benchmark executions will report

identical results.

Summar
This chapter identified the most important features in
Chapter 13 for study and described why they are important. The

requirements for validation and performance evaluation tests

31

k) for these features were presented, followed by a description of
K how the test design was based on the requirements. 1In the next
Y chapter, the system design presented here is expanded to give

N more details of the design process.

wTw e w ®

>

T - - -
v

-
RELY Y @

e un w 2 X

-

[N S R

FrP e e

S0 o
(= 2 2 x n @B

v

32

AT XLt

-‘.Mt -~ T A Py 0y ey .3‘. .‘ N 4 l 0
.‘?t:‘f'ﬁ'.v-‘f ot .."-“‘!‘a‘!'c‘e'n‘?‘:\'o" “. "Q :' "'n" 1‘. l h‘.' il " "‘ i 'o‘ b .'c" s‘ 'l‘. .’ " A "-‘ 'l‘ ‘4'.’1 '0'-'0‘ A .'l A 'i‘ A 'i ;‘l‘; “ 'l A YA

IV. Detailed Design of Chapter 13 Feature Tests

L4 This chapter provides more details of the design of the
2 validation and performance evaluation tests for: (1) the
. prototype Chapter 13 feature, enumeration representation

. clauses, and (2) the other Chapter 13 features identified as

important to embedded applications earlier in this thesis,

-

address clauses and interrupts.

Prototype Test Design

P g TERRCGE

The enumeration representation clause was chosen as the

- A
‘ -

feature for which to write prototype validation and performance

evaluation tests, or benchmarks, because of its current and

potential uge in embedded applications (Hanselman, 1987). The

purpose for writing prototype tests, stated in the

PR S

. introduction, was to develop a greater understanding of the

%t]

requirementg for and the problems associated with design and

A

v

\ implementation of the tests. The enumeration representation
clause was ideal for a prototype because the set of other

language features it affected was rather small, which made

- . e

tegts for the validity and performance of the feature much

-‘ eagier to develop. Tackling a larger or more extensive feature
: firgt would have consumed more research time for the amount

;¥ learned delaying further implementation of tests on other

¢ Chapter 13 features.

B

;5 Detailed Prototype Validation Tesgt Design. The detailed
- design guidelines for the validation teatg for enumeration

it (9

representation clauges came from the ACVC Implementers’ QGuide

33

...... PR

[L ,»-"- -

Sttt e" o" fly 0.0‘0.«".0'4\"' 'l' ':Q".v" "i.v PR TN AR P I KRR X '.l"n by h" :"n"n m" ﬂf‘ " o,

- -,_--_-kq -~

v‘v

I. e_n.

On
,'A' OO0 ‘.'.‘ "'y

OOt

L Mea auali o e aw a-g as gin uie aad st ade ke s ol o rwwmmmw

(AIG), as discussed in Chapter 3. The intent in the design of
the prototype validation tests was to develop and execute a
representative sample of tests that would be required for a
complete validation of the feature. The purpose, again, was to
learn as much about the process of developing validation tests
and the problems associated with this development as quickly as
possible. For that reason, four representative tegts were
written for the 13 test objectives outlined in the AIG for
enumeration representation clauses (Goodenough, 1986:Ch 13, 39-
40). These tests were selected because they tested the feature
as it would most commonly be used. Tests named BD3001A,
BD3002A, BD3004A, BD3012A were developed to test objectives 1,
2, 4 and 12 for enumeration representation clauses. The names
of these tests conform with the naming conventions for the ACVC
test suite provided by the Ada Validation Facility (Wilson,
1987a), making this work more understandable to and usable by
those familiar with the ACVC. A description of the ACVC test
objectives for validation test=s in this thesis is found at
Appendix A; a description of the test naming conventions,
sample source code for the tests, and instructiong on how to
obtain machine-readable copies are at Appendix B.

All of the tests developed were Clagss B tests: that iz, a
compiler with a valid implementation of this feature should
generate compile-time errorg for the teat, because of the
tegt’s illegal ugse of the enumeration representation clause.
Class B teats were developed becausze & majority of the test

objectives for enumeration repregentation clauses in the AIG

34

f" el w‘ - \’ .‘*.‘*A

¥
v : IANATD ot
e LA A:".t ',C' .{‘ T e . SO o Mo A ‘ i v * ‘l“‘,."‘.‘. f 0’!'! Atk

- e g
b2 N &

M

At

3

o are written to detect illegal uses of the clause. Clazg A and
5

&V clagss C tests could have been written for other test objectives

R

to engure that the compiler allowed correct uses of the

?3 fea.t.ur'e.4
;% All of my validation tests, both prototype and

L_ operational, were originally designed to include a gset of Ada
E; language statements in a separate compilation unit that would
-

N implement all of the requirements specified in each test

- objective of the AIG. The purpose was to keep the number of
‘g test compilation units down, providing a more compact and
?: usable test suite. It later became apparent, however, that
; separate tests had to be written for many of the sub-objectives
{g of a single test objective. The prototype validation tests
ff tested one objective per compilation unit. The operational

ey validation tests included multiple test programs per objective
5; because of restrictions that compilers could place on

acceptance of the Chapter 13 feature.

Detailed Prototype Performance Evaluation Test Design.

Following the system design objectives outlined in Chapter 3, I

- \l
\l
5“ designed a test that (1) isolated the enumeration
h repregsentation clause and would not be affected by
o
v
I‘.‘l
Wy
N
0.
ryy In retrospect, it was a mistake not to write more tests for
58 these other test classes. I assumed they would be no different
oy that other tests, 20 I didn't write any. In that assumption I
e wag wrong; I realized when I wrote executable tests for addresas
'ﬁ clauses that implementation may restrict how the feature may be
‘ uged.
M
’-
vy 35
¢
?
"/
'}
-
,?
T AN .-»~. R LT L T e RSN . e N - NN RS L SNy
" .'i.:".." b c" a" b'i "‘ o" i u"‘ nm \K& MOLX *’* "{!' \ q .'.I (" ’ e o -

u.

.
Y o e
R Y A

«

Valr

L T I

NS

LSAODL

v i@k

S

" YRk

-

RARASE

x>

optimization; (2) would be accurate; (3) avoided operating
system distortions; and (4) would be repeatable.

The enumeration representation clause was igolated by
declaring two identical enumeration types (one control and one
test) specifying a representation different than the default
representation given by the compiler for the test enumeration
type, and allowing the control enumeration type to take the
default representation. By performing identical operations on
objects declared using the tezt and control types in a loop and
measuring the difference in the two loops’ execution times, the
execution time associated with the use of the enumeration
representation clause could be determined.

Potential compiler optimization of the test was controlled
by a method used in the PIWG benchmarks, shown in an
abbreviated form in figure 3. GLOBAL, A_ONE, and the procedure
REMOTE are declared in package REMOTE_GLOBAL, whose body is
compiled after that of the benchmark, thus the valuez of A_ONE
and GLOBAL will now always be known to the compiler when the
benchmark is compiled. Therefore, the sequence of statements
in the benchmark cannot be changed by an optimizing compiler,
because the effect of the op.imization could alter the logical
results of the code.

Methods for eliminating operating system interference from
paging and execution of other processes have little to do with
the desgsign of the benchmark itself, but rather with the
environment in which the teat will be run. Benchmark tests

should be run on a system with no other user processes in

36

e

"'.!'l !

<3

v/ - .
ot AR A N A

e

e
e

I~
.

“ w . s - N) e . g P Y N M N) oV Nl
RO n p Yy A AT N DA y. y O WPy !
‘fv‘.‘,'.lfl",b 'l&‘! “?is" "!l:"‘fw*.‘.,h"!.n‘.l:‘?'p‘!‘c‘,'%: ~ Wl !'c"‘o‘:'h. l"‘o‘?'l'.!'t.!'o" o .?'i.!'b‘!'t.a':.!'!“'Clc'l .'o'..h N PN NN L A M Rk =

package REMOTE_GLOBAL is8 -- for explicit control
A_ONE : INTEQGER; -- of optimization
GLOBAL : INTEGER := 1 ;

procedure REMOTE;
end REMOTE_GLOBAL;

with REMOTE_GLOBAL:; use REMOTE_GLOBAL;
procedure TEST is

begin

for loop_counter in 1 .. 100 loop
GLOBAL := GLOBAL + A_ONE;
REMOTE;

(Test feature statements>
end loop;

end TEST;
package body REMOTE_GLOBAL is -- must be compiled last
LOCAL : INTEGER: -- will be set to 0 at elaboration
procedure REMOTE 1is
begin
GLOBAL := GLOBAL + LOCAL;
exception
when NUMERIC_ERROR => REMOTE ;
-- cannot happen 1f test is working
end REMOTE; -- (prevents inlining)
begin
A_ONE := 1 ;
LOCAL := GLOBAL - A_ONE; -- really a zero but
end REMOTE_GLOBAL; -- compiler doesn’t know

Figure 3. PIWG Optimization Control Package

concurrent execution and with as many system processes disabled
ags possgible (Clapp and others, 1986: 764). I eliminated much
of the operating system interference by keeping the size of the
benchmark small (to reduce paging) and by running the benchmark
when the host computer had a low load, to reduce the effect of
other processeg on the timing results from the benchmark.
Although the prototype test was to be run on a time-

sharing system, I did not eliminate all operating system

37

-

PRI
NOAS o,

o
-,
e
T

UNC))

‘ ﬁ interference. The goal of this thesis was to develop

‘;ﬁ benchmarks for compilers targeted to embedded computers.

(}ﬁ Operating system interference is8 not a problem with these

:ﬁ systems because the user has much greater control over the run
;ﬁ% time library (or operating system) and can ensure that only the
;%i benchmark is running when testing the compiler.

:;g Repeatability of the testz was built into the benchmark by
P

providing a sound performance data reporting capability and by

i making no assumptions about a gset of conditions before the test

Pop

“\

‘ﬂﬁ started. Repeatability of the test was proven in its actual

o

O

o] use .

- The PIWG benchmarks and benchmark support software were of
':i great use in the design for collection of timing data and for
éfj avoiding optimization of the test programs. A description of
- the PIWG software used in this thesis and instructions on how
f; to obtain machine-readable copies may be found at Appendix C.
lf? Using the design philosophy of the PIWG benchmarks, I designed
+ SRER

;) a performance benchmark that consisted of (1) a control loop
a7

sﬁ- containing an operation on an enumeration object without the

. _\J“

h:? use of an enumeration representation clause; and (2) a test

o

po v loop containing an operation on an enumeration object that used
Y
& an enumeration representation clause. This dual-loop approach,
o7

N

{} as described in Chapter 3, is superior to others because it
‘:E: igolates the feature and eliminates the time associated with
T
:;E: overhead, such as loop control.
o
.‘V’..-h

X

.

iV
"

-_'C 38

e

2

n

@ ¢

)
S

"4 L LIPS "L W e € M T T e T a® iV a e " T, TatmT T aT A A e e e Ye "y s e S R L)
X ;";‘\':;“-f,' S RS SR SR SN h}..;:}‘.;?\: “ - . .';'.2;":::.}:;;.' m:{, -!":'.‘;J " . -\-J\-@:_-.:.r.".-;_-‘;p LOGA *N“.{ 'y

[) '-:

&

»w

) .

:{ The design of this test, shown in figure 4, was modeled
ﬁu after test designs for other Ada language constructs in the

PIWG suite of benchmarks (PIWG, 1886). In this design the

N
X
.-
o Control _Time_Start := SECONDS (CLOCK):
. while <(condition> loop
y {(optimization control statements>
. (control version of feature)
S end loop;
df Control _Time_Stop := SECONDS(CLOCK}; !
S \
(Test_Time_Start := SECONDS(CLOCK);
ot while <(condition> loop
. (optimization control statements>
L (test version of feature>
o end loop;
K Test_Time_Stop := SECONDS(CLOCK) ;
o Difference_Time :=
o~ (Tegt_Time_Stop - Test_Time_Start) -
o (Control_Time_Stop - Control_Time_Start);
A Figure 4. Performance Benchmark Structure.
1%
("
'}: current CPU time is retrieved from the SECONDS(CLOCK) function
.
.Q (DoD, 1983:Ch 9, 11) before execution of the control loop. The

1"

corntrol loop will be executed a sufficient number of times to

B,

~,
.n} obtain the timing accuracy desired. Optimization control
)"~

~
%' statements, as described earlier, are placed in the control
i
o loop, followed by statements that do not use the feature being
'5 gtudied. At the end of the control loop, the current time is
o
'% again retrieved. The test loop ig identical to the control

| 2
B 5 loop except that the feature being gstudied is used in the test
iy loop statements. The calculation at the end of the test
D
%. removes all bias associated with the loop overhead and calls to
R,
9.
WO the clock function, leaving the time associated with the use of
‘ ey
S
-

" 39

4
‘M

Yty

»
’

Py

4

.‘.L

ks

..".‘ . ; - "v .‘» "- .: ‘.-.

Ny

AR

the feature. This calculation assumes that the test loop will
take longer to execute than the control loop since use of the
feature i8 normally assumed to add complexity to the test
loop. It 1s possible that the default (or control) use of the
featureg 18 less etfficient than the test use of the feature.
In such casesg, one should determine the absolute value of the
difference to determine the increase in performance
attributable to the test version of the feature.

Problems in Prototype Test Design and Certification.

Recall that the Ada LRM states, "An implementation may limit
its acceptance of representation clauses to those that can be
handled simply by the underlying hardware® (DoD, 1983:Ch 13,
2). Therefore, although an implementation may implement a
feature such as enumeration representation clauses, that
implementation may restrict how the feature may be used. These
restrictions, in turn, may cause gome validation tests to be
inapplicable for that implementation. If a test is ruled
inapplicable, the test is not run when the compiler is
validated. For example, an implementation for enumeration
repregentation clauses may allow the clauge for explicitly
declared enumeration types, but not for derived types. Any
validation tests for derived types would therefore be
inapplicable, and the compiler simply would not be tested in
that area.

The difficulty ruling certain tests inapplicable 18 that
where a number of Bub-objectives are listed for one test

objective, separate test procedures must be written for each

40

L Bl absi aal b il gin pes 8in 80 niaise Ate Bl Aia dia dia dis i e 808 e INA B e AT Aia At 008 A0 A 'a b Sod A A A hEal Ak BaA el A/ R el A Al A Bah s '."1

sub-objective, because some of the sub-objectives may be
inapplicable. For instance, in the example presented earlier,
1f a test procedure tested enumeration represgentation clauses
for both explicitly declared and derived types, the test would
be declared inapplicable, even though the compiler impiemented
enumeration representation clauses for explicitly declared
types. Because compilers may provide no, partial, or full
implementation of a feature, validation tests must be designed
to test all possible implementations. This makes the number of
tests that must be written increase dramatically as the number
of sub-objectives of a validation test objective increases.

A seeming flaw in the application of this benchmarking
approach is the assumption that use of a feature in an
application will cause the execution time for a sequence of
statements using the feature to increase. This may not be the
case. In fact, preliminary test of the benchmarks for
enumeration representation clauses showed the test loop took
lees time to execute than the control loop, resulting in a
negative time difference between the loops. Other researchers
have found similar anomalies uging the dual-loop method
(Altman, 1987:3).

The flaw is not in the dual-loop method, but in how it is

applied. In the prototype benchmarks, I was unable to

,
L4

eliminate interference from the operating system, which 1
distorted the benchmark’'s execution. When the dual-loop

benchmarks were executed on embedded computers (with no

l\J'.J"JA‘)"I"I"J -

41

o
53 J“."")“J"J L4

)
. ®

AR

&
I *,
L JARARA

-
v,
s
v

M

operating system interference) these timing anomalies were

eliminated (Klemens, 1987).

Addregss Clauses and Interrupts Test Design

Now that the description of prototype test detailed design
has been completed, let us proceed to describe the detailed
design of the actual experimental tests.

Detailed Validation Test Design. As stated earlier, the

desi1gn objectives were taken from the ACVC Implementers’
Guide. The 23 test objectives test the ability of a compiler
to detect illegal uses of the address clause and to permit
legal uses of the clause. All developed tests should be passed
by a compiler providing a full implementation of the address
clause. Therefore, class A or class B test programs were
written for all test objectives. The class A tests do not
contain run-time checks for use of the address clauseg, but I
verified that thege could easily be changed to class C (run-
time) tests by checking that the addresses given for the
objyects, subprograms, etc. in the test are consistent with the
addresses given by the 'ADDRESS attribute applied to the same
objects, gubprograms, etc. during the test execution (DoD,
1983:Ch13, 12). No other classes of tests could be reasonably
applied to this feature, since it affects only the location of
objects and executable statements when the test is compiled.

Detailed Performance Evaluation Test Desgign. The

benchmarks for address clauseg and interrupts were designed to

determine the time it takes for an application using Ada’'s

42

™ 0 *obd o hac ARt Rat Aat Ael Aok Sl fieh Sad Adcihindehinhiubiidd dut iat diat s dia: ol ald-add afh atie bl oot Adr el Sialt Sk Anl Aot hie" ghe Slin dha B A b hta Abad

pis
ALY
PG
o-
R

f? interrupts feature to respond to an interrupt, because this
S5
:?.. . time is critical to embedded applications (Clapp and others,
N 1886:771). The objective of these benchmarks was to measure
A -
;%S the delay between the time the interrupt is raised and the time
?:i: the interrupt handling routine is entered (Seward, 1987).
iz_ Recall from Chapter 3 that the interrupts feature of Ada
1;? allows an application to associate an interrupt with a task
E.E entry, so that, when the interrupt occurs, the task entry is

o called and the accept block for the entry, if any, is
'53 executed. The detailed design of these benchmarks was based on
?ﬁé three variables in designe using this feature: (1) the number
:~ of interrupts that will be handled, (2) the number of tasks
;Ei that will be used to handle these interrupts, and (3) the
.i;{ number of entries in each of the interrupt handling tasks.
{f? The semantics of Ada tasking allow developers to write one
.%E tacsk with several entry points, several tasks with one entry,
s

-

or any combination in between to handle the 16 posgible

I'4

1S,

interrupts that MIL-STD-1750A computers may generate (DoD,

ry

4 %
3

]

o

e 1982:19). Table II shows the configuration of the the

Jﬁ; benchmarks designed for this feature. 1In all of these tests

Eﬂ

;J only one interrupt is raised, that of a floating point

e

;ﬁ' overflow, generated by the benchmark itself. In order to

ey

is igolate and gtudy the interrupt delay time associated with one

Q.

e interrupt ({.e., floating point overflow), I desgsigned the
'E}- benchmarkeg sc that only one interrupt could cause a call to a
b -
j?; tagk entry. If task entries had been associated with other

Y
\ '-,:-
SO
.-n'-‘ 43
0.
\.":‘.
-\"'.'J‘
o3
@4
L
e e e e e entasisniaw
ety X G T e R e e o R O e P RPN SR RN SO LD L CA X s

‘t‘"l‘.c'.,o.u"’tuu',ﬂ- WIS OR Gl I-!‘Q‘i WGTNGW " w v ' e e AR

Y
g

S

[4

Aok

-
AR AR
K FRE TS,

S's.,‘fl

D
.4

DR

»

*

>

v

Y o
l,’.'"-."!.

L

i g ¥y

Table II
Interrupts Benchmark Configuration.

Interrupts Entries
Test Name Handled Tasks per Task
INT_TESTI 10 10 1
INT_TEST2 10 5 2
INT_TEST3 10 2 5
INT_TEST4 J0 1 10
INT_TESTS 3 3 1
INT_TESTS 3 1 3
INT_TEST7 1 1 1

irterrugte that are known to occur during a program’s
exez~_t2.or., these other 1nterrupts could have had an affect on
*re de.ay t.me of the interrupt being studied. For this
reas:r.. s:% of the MIL-STD-1750A's 16 interrupts were not
ass:c-.ated with task entries in the benchmarks developed.
Irterrupt € {executive call), interrupt 7 (timer A interrupt),
ar? .rterrupt 9 (timer B interrupt) were not handled because
ey wolld occur too frequently; interrupt O (power down),
.rrterrzpt | ‘machine error), and interrupt 15 (spare) should

-+ te randied by an application.

INT_TEST!, INT_TEST2, INT_TEST3, and INT_TEST4 were

o

dez.gred 2 determine the effect the number of tasks and

- *ri1e2 per tack had on interrupt response time. One would
exye~* *hat variability in these results would come from the
:r.-reased overhead trncurred by the task acheduler for the
ternchmarka with a h_.gh number of tasks. On the other hand, the

rendezvous logic for those tasks with g8ingle entry points is

.88 c-mpiicated and should be more efficient.

44

O S e

L T T T N S Tt A x e
FAIAT G A T A WO R A R A A
i-' .'.'- Dl o V.A; i RAN S W A I AR AL

o Q‘ g -3‘ ‘!';n\.A
N ol e Wit 2k, b ity o My ﬁ.”

]

)

-
‘,' oo .

0%, % W%

»

INT_TESTS, and INT_TEST6 were designed to gtudy the game
effects but restricting the interrupts that were handled in the
application to only those interrupts that were expected to
occur during the execution of floating and fixed point
inatructions. Again, the effect of the number of tasks and
entries per task on interrupt resgponse time was examined.

Finally, INT_TEST7 was designed as a baseline against
which the other benchmarks may be compared. It contains the
m:nimal number of tasks, entriesg, and interrupts handled.

The benchmarks were all designed to raise the floating
point overflow interrupt (interrupt 3) (DoD, 1982:19) by adding
one floating point object whose value is just below the largest
floating point number that may be stored to another floating
point object whose value is such that the operation causes an
overflow. No matter what the task/entry mix of the benchmark,
at least one task entry will have an address clause that ties
the entry to MIL-STD-1750A interrupt 3. The example shown in
figure 5, an abbreviated version of INT_TEST7, gives the format
for the interrupt delay benchmarka. A call is made to a
procedure that will return the current CPU time before the
floating point overflow is generated in the main procedure.

The floating point overflow is then caused, which should
effectively generate a task entry for the task entry tied to
interrupt 3. The accept block for the entry ig then entered,
and a call is made to GET_ALL_TIMES to retrieve the CPU time.
Thig time value i3 then stored in a global variable that is

made vigible to the task and the main procedure thrcocugh the

45

- WAL B REN
'\..F'*. ‘,."w N ';
PO A P »

T

e " ’“ AN "
V! e 'r ' s St .u‘o‘.'o "o‘ AN ‘.'a Ja‘" RO

X - o2
l
~" "' 50 2 O) r!;l

()
..i.'.O

O‘Q.

gL
'

&
W
-
o
by

1]
o package QLOBAL_INTERRUPT_MAKER 1&g
{ function FLOAT_RETURN return float;
2 end GLOBAL_INTERRUPT_MAKER;
L with TIME_PACKAGE_1750A; use TIME PACKAGE_17S0A;
‘G with GLOBAL_INTERRUPT_MAKER;
b procedure INT_TEST7 i=s

t float_object :FLOAT:= 0.500000 * 2.0 %% 127;
O delay : TIME_1750A := 0.0;

EN clock_bias_start : TIME_1750A := 0.0;

s clock_bias_stop : TIME_1750A := 0.0;

P> before_interrupt : TIME_1750A := 0.0;
P after_interrupt : TIME_1750A := 0.0;

pragma SHARED(after_interrupt);

o
ho-. task INT_HANDLE_3 1is
1*2 entry interrupt3;
'i\ for interrupt3 use at 3J3;

o pragma PRIORITY(3);

) end INT_HANDLE_3;

7 task body INT_HANDLE 3 is
,}S begin
SRS loop
.;: accept interrupt3 do

. GET_ALL_TIMES (after_interrupt);
X end interrupt3;
L, end loop;
b end INT_ HANDLE_3;
o begin -- INT_TEST7
- - for 1 in 1 .. max_values loop
ko GET_ALL_TIMES(clock_bias_start);
:) GET_ALL_TIMES(clock_bias_stop);
o, GET_ALL_TIMES (before_interrupt);
.f} float_object := float_object +

o GLOBAL_INTERRUPT_MAKER.FLOAT_RETURN;
ijb delay := after_interrupt - (before_interrupt +
[clock_bias_stop - clock_bias_start);
® end loop;
;3 abort INT_HANDLE_3;
e end INT_TEST7;
.
?i package body GLOBAL_INTERRUPT MAKER is
e function FLOAT_RETURN return float is

begin
return 0.50000 # 2.0 #»x 127;
end FLOAT_RETURN;
end GLOBAL_INTERRUPT_MAKER;

Figure 5. Example Interrupt Delay Benchmark

46

v -

ARt

AR

‘-" 'l. N
P L U

G558

l‘

-~
L

TS

@
‘%

S X

o ¥
AL LA
ot 20 Tt I

' l":l‘\l. ;

‘/“/\- Sl

“» ‘\.J'\““n \," :;- r

PO

Ada pragma SHARED. After the accept block of the task entry
has finished its execution, control returns to the loop in the

main procedure and the interrupt delay time is determined. By

subtracting the time for a call to the GET_ALL_TIMES routine,
the effect 0f the timing calls may be eliminated. A sample of
the benchmarks developed in this thesis and instructions on how
to obtain machine-readable copies are at Appendix C.

Validation Test Design Problems. The primary difficulty

with writing validation tests for address clauses is the
representation of the address in the test. The syntax of the
address clause is:

for simple_name use at simple_expression,;

(DoD, 1883:Ch 13, 7).
The simple _expression gpecities the address for the entity
given by simple_name, and the expression must be of the
implementation-defined type ADDRESS, declared in the Ada
Package SYSTEM (DoD, 1983:Ch 13, 7,10).

While an address given in the address clause, whether
interpreted as an address or an interrupt level, will
ultimately be translated to some phygical memory address on the
underlying hardware, the type ADDRESS may be the pre-defined
Ada type integer, positive, natural, access, private, limited
private, or even some other type declared by the
implementation. Therefore, validation tests had to be designed
in such a way that addresses were not explicitly given in the
tests. Consider the simple example at figure 6 of an address

clause. In this example, an object of type integer called

47

!

"

)

I
i
£ |
:s . counter : Integer;
(for counter use at 100;
;3) Figure 6. Address Clause Example

]‘ counter has been declared, and the compiler has been instructed
?3 to store counter at address 100. This is legal for compilers
L4

ﬂ{ that recognize 100 as a valid value for type ADDRESS. Another
L~
i‘ compiler, with a correct implementation of the address clause,
v
R may reject this example because it has an additional
s restriction that addresses for objecte be greater than gome pre-
{

L}

i defined number, for example, 1000. Because of differences in
‘)

: computer architecture and restrictionse an implementation may
. place on address clauges, there could be a geparate set of

' legality rules for address clauses for each Ada compiler. The
.

N problem, then, is how to write syntactically legal validation
| '\:
LE tests that all Ada compilers claiming a correct implementation
4
of address clauseg and interrupts could pass.

»

'_ The first solution is to write tests specifically for each
,.p'

'j implementation. Currently there are 137 validated Ada

Y

% compilers, and the number is growing (AdalIC, 1987). Given the
i

. number of Ada compilers, this would prove to be unworkable
igh
%ﬁ because it would severely complicate the maintenance of the

‘) ACVC test suite, as well as running counter to software

N : engineering principles of usgability and portability.

Another golution, and one that has been uged in tests for

W

\

9 other implementation defined language features in the ACVC, is
. L]

.
Mo 48
oY
A 0,
M

L

-'l'l‘l‘\ ‘.. 'h * ' " \;‘*\ \' v . .
fl!'.tf b, $.‘" e .'-‘ ':‘ 0, t’:. “‘\ " O '«-‘"l‘. t‘.‘ ‘0'-"'0.' "’ "h‘ 'o‘ 'a ‘A N "'o '6‘ B ‘l ~'!'.' LXK e M .‘O A N W .'0 AR WU S

Mo LN g %y

N I R T T T W T W W WY W W PR N R WY T W R EN T RIS WL e TR eI FURNLEE TRV TR RS RURETE TR W AT L r:r.r-uw

to replace the feature with a macro (Brashear, 1987a), a
symbolic value that would be modified by each implementation.

The example in figure 6 would be modified as shown in figure 7.

counter: Integer;
for counter use at $object_address;

Figure 7. Address Clause Example with Macro
Thig "master version test would then be modified by each
compiler implementer when the compiler was validated, replacing
$object_address with a legal address for his implementation.
This approach, although workable, would be cumbersome, given
the fact that these macros may appear hundreds of times in the
tests for just one language feature.

The approach used to retrieve legal addressgses in this
thesi1s project, then, was to write a package ADDRESS_PACKAGE
that declared a number of objects of type ADDRESS in the
visible part of the package. A number of objects, subprograms,
packages, tasks, and task entries were declared in declarative
blocks in the executable region of the task body. The
addresses for all these entities were extracted using the
'"ADDRESS attribute (DoD, 1983:Ch 13, 12) and stored in the

vigible address objects. Since a declaration of an entity in a

block i8 effective only for the duration of the block, it was
legal to reuse these addresszses because the entities declared in
the ADDRESS_PACKAGE body no longer exiated when the addresses

were used in a validation test. Thisa worked well with one

49

-
e e¥w o0

Ao %

-

I

(i e PR

- A ‘
RIS AS AR M N T YN YR g 7 Y

7".-*1—.-'-"

compiler that placed few restrictions on the simple expression
in the address clause. Another compiler restricted the address
clause to static values that must be set when the compilation
unit in which the address clause is uged is compiled. For thise
compliler, constant objects of type ADDRESS were declared and
assigned values that would be accepted by the implementation.
This method means that each implementer will have to provide
the package body for ADDRESS_PACKAGE tailored to his
implementation when running the validation test suite.

While this approach adds another package to the ACVC test
support software, it eliminates the need for large number of
changes to ACVC tests that would be required to tailor those
tests to a particular implementation, and eliminates the need
for tests written particularly for each implementation.

Another problem, discussed earlier with enumeration
representation clauses, is that implementations may restrict
the use of address clauses. This means that a separate test
program must be written for each combination of sub-objectives
of a test objective. For example, test objective 11 for
address clauses states:

Check whether an addres=s clauge can be given for an

object declared in a declarative part.

Implementation Guideline: Uge a variable and

constant having the following typea: enumeration,

integer, floating point, fixed point, array, record,

accesgs, private, limited private, and task.

Implementation Guideline: Include a check for

declarative parts of subprograms, blocks, and package
bodies (Goodenough, 1986:Ch 13, 54).

50

. ” - LT TV g

. . - a A - PR L e
h (A (3 () N (P, % 0 Ka 0 Co A %
5 ﬂo.-. ul l.‘.l".l« AL b. .“‘!;"lt‘v\:"Je“.'!‘..0"'.i.‘.h‘°::‘|h‘!|a OOOR NGO !!:‘?\s‘!h". ?h iy, i teiiatals OO AR R X (o K

t!
.

J

x5 W 2L
FrL LR

)
-

'y
s

Since an implementation could conceivably regtrict 1tz

=7

o N 4

acceptance of address clauses to those given for integer

-
‘ﬁ

e I

variables, 20 test programs would have to be written for this

e

;ﬂ test objective, because there are 20 different combinations of
é? » objects, variables, and constants. Each of the sub-objectives
~Vﬁ would have to be written as a separate test, because any test
:ﬁ that contained a use of the feature that the compiler

Lﬁ restricted would be ruled snapplicable (Wilson, 1687a). Since
{ﬁ each compiler’s implementation may vary between none and

’%- complete, the tests must be written so that if a test ig ruled
&q inapplicable, it does not contain a test for a use of the

‘:; feature that the implementation does support.

::2 Performance Evaluation Test Design Problems. In the

N

,:} course of this research, I found that the implementation of
if? package CALENDAR provided by the compiler being used to develop
\:i the benchmarks did not return the current CPU time with the

precision necessary to accurately measure interrupt delay

rs
.
v

\ .l a R
L/ f .
el

time. This compiler’'s implementation of the pre-defined type

.:w

o DURATION is:

% type DURATION is delta 2.0 %% (- 12)

e range -86_400.0 .. 86_400.0;

"».f

%': The current CPU time value returned by the SECONDS function in
~

W

f& package CALENDAR is a subtype of DURATION, therefore the CPU
be

“a time i3 accurate only to 244 microseconds. Past experience has

—";'

j}- shown other interrupt delay times to be in the 10 to 100
¢

%ﬁ’ microsecond range, thus the precision of the elapsed CPU time

:.i

‘iJ in package CALENDAR was inadequate for this research. An

L

‘o

... 51

<

Y

@

e

D) .

AL LA .r.rf,-(~ e L
%) "y N\.ﬁ\'., \- Sy
M, bt) AU B L i L WA L S OO

L f¢~f- LT
'\ .’. ‘- p"

L AT T T e T

ay-
|.eaa ()

S

 /

,
TS

ok

.
L 1Y
'(..A'lwl -

y
o*

‘-'”'F"::'"n = 2

R
EAA

2
o

L e

-

il

Pl)
- s 2

Pd

x5 A
LA

> o -
=d

Pl

: N ::, b
?‘f"f l’.""'f ¢

-._w

.1
@ ¢
«

,l
-,
'

.‘;)

alternative package, TIME_PACKAGE_1750A was written that
included three procedures: GET_ALL_TIMES,
RESET_INT_VECTORS_7_AND_9, and GET_TIMERS; and declared a
floating point type, TIME_1750A. GET_ALL_TIMES calls
GET_TIMERS to retrieve the current value of the TIMER A
register of the MIL-STD-1750A. Because the TIMER A register is
incremented every 10 microseconds (DoD, 1982) GET_ALL_TIMES can
calculate the current CPU time (in seconds) by dividing the
value of the register by 10,000 / second. If, for example, the
current value of the TIMER A register was 1234, the elapsed
time since TIMER A was set to 0 would be 12,340 microseconds or
0.01234 seconds. GET_ALL_TIMES, then, was able to return the
current CPU time accurate to 10 microseconds. After its
correct operation wasgs verified, the GET_ALL_TIMES procedure in
TIME_PACKAGE_1750A was uged to retrieve CPU time in the
benchmarks in the remainder of this research. Appendix F

contains a detailed description of TIME_PACKAGE_1750A.

Summary

This chapter described the detailed design of the
validation tests and benchmarks developed for the prototype
feature, enumeration representation clauses, and the
operational features, address clauses and interrupts.

The validation tests were designed to test a compiler's
ability to recognize legal uses of the feature and also to
detect illegal uses of the feature. The problem of non-

portability of the tests because of differing implementations

52

A W T T " A" AW e o e Tr e
3 b, ‘Mﬁ AL R AT)
A l‘f‘ ' n‘ Wl .-‘. 0‘) .' o s 4

IRTRI
)

Sl)

P QRO " o Y Y)"(.J " O, W Cu” y,
.‘M’b“. N ..‘l'n’l...o""‘o’!'..t'i. b 0.0 LA .nl 'a"‘t' A .

-
NN
L 2 A

o

AN

-
(35

<

oG

L
‘of Sl AL

Sy S Ty

. I R
PR et
g e bt A N N

S ate ane s Bah AnA A8 oh B8 gl BB A A adide i tg At i St o Be ode add ol ate acd Ad'A s Aog el ied aak Aed nila-alkeraiaila tle ALe AndhadCRdCing Ay |

of the implementation-defined type ADDRESS was solved by
placing all objects of type ADDRESS that would be used in the
validation tests in one package and having the implementer
supply the package body.

The benchmarks for interrupt delay time measure the delay
from the time an interrupt is caused with a floating point
overflow to the time the accept block of the interrupt handling
task 1s entered. A support package, TIME_PACKAGQGE_1750A, was
developed to return CPU time with greater precision than
available with the implementation of package CALENDAR found in
the compilers used in this research.

The next chapter will validate (or certify) the approach

and the tests developed in this research, report the results of

the tests, and analyze the results.

V. Analysis and Results

The purpose of this chapter 1s to certify the test
software written in this research and to report the results of
the validation and performance evaluation tests for the Chapter
13 features studied. I will use the term “certification’
instead of “validation® to avoid confusion with the validation
tests. The certification of these tests will ensure that the
tests do indeed test what they claim to test.

In order to keep the potential distribution of this thesis
as wide as possible, no actual compiler names will be used when
reporting validation or benchmark results. The compilers that
were used will be generically described as shown in table III

below.

Table III
Generic Compiler Description

Compiler Host Target
A DEC VAX-11/780" DEC VAX-11/780
B DEC VAX-11/780 MIL-STD-1750A
C DEC VAX-11/780 MIL-STD-1750A

All of the compilers used in this thesis were validated when
the research was performed. The benchmarks developed in this

thesi1a were executed on a Sperry 1631 MIL-STD-1750A procegsor.

* VAX is a trademark of Digital Equipment Corporation.

54

- W (o e P P TN 4 o T AP Y
0 0 P N A A

Certification of Validation Tests

This section will certify that the validation tests

Y _ written in this thesis will indicate whether a compiler’s
implementation of address clauses and interrupts conforms with

N the specification for those features in the LRM. Recall from

) Chapter 4 that two classes of validation tests were written:

A Class A tests, which determine a compiler’'s ability to

recognize legal uses of a feature, and Class B tests, which

Q determine a compiler’'s ability to recognize illegal uses of a

,j feature. I argue that certification of these validation tests

L arises from the following evidence: the design of the tests "
{

was made as simple as possible; potential for error in the use
of the address clause was minimized by localizing all address
values 1n one package; all non-address clausge gyntax errors
were eliminated; complex test cases were developed separately;
. implementation-dependent constructs were avoided; and finally,
‘2 the tests were reviewed for correctness by the primary

~ developers of tests for the ACVC test suite. Each of these

contributions to test certification is described below.

~: Test Simplicity. To test whether a compiler could use a
4

- feature under a sgpecific set of conditions, the validation
tests were written to include those conditions and no others,

lest gspurious side-effects be introduced.

q) Minimization of Error-Prone Constructs. This technique
? was used to certify the development of the ADDRESS_PACKAGE for
i the address clause and interrupts tests. Each of thege tests
: used a constant or variable from the visible part of

J 55

|

e e N e P " e -HW S R TN

i IR o M N LA N LI O *’q o5 RS
,'o.:'c"'r,‘- % N AN l..' .'l. ¢l' 'l‘. i"l N AN ... Kh Sy P D) W' M " ~ m o b :

z
LR A

A, 7,

! 5
» “a
’

.

»

1’

v

.,.,
BE JOMNSE
I R

A

P

-
"v‘..:. "X

x
v

Y
AL @G

NN
2

3
2
I8

A5 @
Dy

ADDRESS_PACKAGE for the address of a construct in the address
clause. By declaring all addresses in one package and using
that package for all tests, the potential for error in the
syntax of the address clause was greatly reduced. Such use
eliminated the need to enter explicit addresses in each of the
many (110) tests, while ensuring that the Ada compiler would
detect errors such as misspelled address variable nameg by
identifying them as undeclared variables, since all variables
must be explicitly declared in an Ada program.

Certification of Test Correctnegs Without the Feature. In

developing the validation tests for address clauses and
interrupte, 1 assumed that the Ada compiler being studied
correctly implemented all other language constructs used in the
test. As each test was developed for a gpecific use of Ada’'s
address clause, a similar version that did not make use of the
address clause (but identical in every other way) was also
developed, compiled, and examined for syntax errors.
Performing these parallel compilations ensured that the
validation tests developed did not contain illegal uses of
other Ada constructs that could affect the outcome of a
validation test.

Combinations Tested Separately. The features being

studied, address clauses and interrupts, often could be used in
a number of different ways. Because compilers are free to
reject the use of a feature under certain conditiong (e.g.,

allowing address clauses for variables but not for constants),

one teat was written for each use. Writing separate tests for

56

P

e T%

]
Ay

W)
2o @ LTI

combinations of the feature'’'s use ensured that none of the
tests would be ruled i1napplicable while they still contained
tests for uses of the feature that a compiler claimed to
support. Therefore, a compiler would be tested for all uses of
the feature that it claimed to implement. Should a compiler
fail a test, the specific nature of the test would also help to
pinpoint the set of circumstances that caused the compiler to
fail.

Eliminate Implementation-Dependencies in Teagts. In each

test design I used only those constructs (excepting address
clauses and interrupts) that all compilers must support. For
example, all compilers have to support a data type named
INTEGER but do not have to support the type named
SHORT_INTEGER, so tests that required integer objects were
declared using the INTEGER type.

Review by ACVC Test Developers. Finally, the tests

developed 1n this thesis were reviewed for accuracy and
correctness by the primary ACVC test developers for the Ada
Validation Facility. These developers found that the
validation tests developed in this regsearch were “on target,’
the approach used in developing the tests was “sound,” and the
ugze of ADDRESS_PACKAGE to solve the problem of non-portability
of addresg clauses agreed with the developers’ solution for
this problem (Brashear, 1987b).

The design techniqueg and software reviews built in to the
degign of these tests engure that the test suite developed for

addregs clauges and interrupts will detect illegal

57

A .. .'v

I" "

%»355‘.

:mp.emer.taticns of these features and certify valid

o
Gt: .mp.emertaticns of these features. The test simplicity,
(fg min.mizat:.cr cf error-prone constructs, and parallel testing
X w.*h-_* the feature preclude the introduction of erroneous
e _zage _¢! Ada ccnstructs that are not being tested.
g Ty Zdeszligring the test sulte to test elementary uses of
g_ atirezz ~.auses and i1nterrupts, I have designed a test suite
= Y4t ma, te agrl.ed to many compilers with varying
- v emerntatione ¢f these features. This tegting of elementary
;i _Tez ! +re feature avoi1ds more complicated combinationsgs of the
- te:"re s _se which makes the test more portable. The review
4
!J . til- fr.mary ACVI test developers provides the assurance that
o 4 £ ..*'e =:m:.ar to that developed in this thesis would be used
: - A0 +: gperform actual Ada compiler evaluations.
ol Treref:re thi1s suite may be used to angswer the first
33 ;=77 . ! *re thesis problem. Developers of embedded
;5 afp; .. a*.:.ne tefore they use a compiler’'s address clause or
‘ﬁ' *err_.;° featiure 1n their application, may apply these
2} “a . ta*. . tezgts developed in this thegis to their compiler and

» A aletrer *rhat compiler’'g implementation isg valid, and

; <2.vl, =2..tab.e for their application.

Ya.:.!a*.-.. Test Resgults

», .- .' » ' . '- -,
. S N
'. ‘. ! n“.' B

P

Bera.se ~f the varying level of Chapter 13 implementations

-

ra the LRM aliows, discugsed in chapter 4 of this thesis,

g-me va.idation tests for Chapter 13 features may be

.

irapp.icable fcr certain compilers. The only way for a

58

° AL hES
% DgICAAXARXLNL SUR

s

—

£ A e S

Bl M W) o’"a’;‘ M2\ OO s

ot s aamn
AT e e T
AAdad b

P

NI

e E T e
- . -\ s R A

-
'y
R S

0Py

.
o

;’
[Agr e

*

-
Al

Ry 1

1"
LA

» k'

-
("L”L‘-. l:

a

A

B af
AN @

54

»'r

RARRRRAL R

compiler to fail a validation is for it to fail a test that is
applicable. The results for the validation tests will be
reported as pasged (the compiler implemented the feature
correctly), failed (the compiler did not implement the feature
correctly), or inapplicable (no test was made) .

Enumeration Repregentation Clauses. The primary result

obtained from this set of tests was a greater understanding of
the thesis problem of validating Chapter 13 features. While
compiler A passed all four tests that were written, these four
tests examined only four of the 13 test objectives for
enumeration representation clauses. No determination of a
language feature's validity of implementation may be made on
such incomplete testing, because a compiler must pass all
applicable tests to be certified as a valid Ada compiler. In
the case of compiler A, all test objectives were applicable to
its implementation of enumeration representation clauses, 8o
all tests would have to be run before it could be certified as
a valid Ada compiler.

Address Clauseg and Interrupts. One hundred and ten tests

were written to test the 18 objectives for address clauses and
the five objectives for interrupts. A complete list of the
teste run on the compilers and of the results of those tests is
provided at Appendix D.

Compiler A passed 58 tests, failed none, and was not
tested on $2 because they were inapplicable. Compiler B passed

63 tests, failed 1, and was not tested on 46 inapplicable

59

7
& Y

> Yt 7
LRt

‘.

o A;

.

5

NN,

T

‘ ‘;& .l ‘I ..
[4

&

AN

S @

* .
»

S

d”;()

I

BRI

aeee

v

e
AN

SRRhRT

G
LI WY §

-

Y
-

.’
s 'y W

h

PO ST S I

® s

22

W

-
D
.

- '

v 'y
'

AN

wE S

Neo X

-‘.‘

z
14
.

Y

"

-
< -

PR}

AT AT A A
(AT UL R IO X AN

tests. Compiler C passed 58 tests, failed none, and wag not
tested on 52 inapplicable tests.

The test that compiler B failed, test BDS102A, tests the
ACVC Implementers’ @Quide objective: "Check that an address
clause cannot be given for a (task) entry family (Goodenough,
1986:56) . This ig a class B test that should fail compilation
because 1t includes an illegal use of the address clause.
Comp:iler B, however, compiled test BDS102A without detecting
the error, thus failing the test. After discussing this failed
test with the compiler developers, the error that caused
compiler B to fail test BD5102A was corrected. Because the
later version passed all tests, and I determined that the
corrected versgion did not affect the benchmarks developed in
this thesis, compiler B was used to develop and run the
benchmarks for interrupt delay time in this thesis.

Using the guidelines of the Ada Validation Facility
(Wilson, 1987a), compiler A and compiler C's implementations of
address clauses and interrupts would be ruled valid because
they passed all applicable tests. Compiler B's implementation
originally would have been ruled invalid because it originally
failed test BDS5102A. When the compiler was corrected and all
applicable tests were passed, then compiler B's implementation

would be ruled valid as well.

Certification of Performance Evaluation Tests

This section will answer the question: how do we know that

the benchmarks developed in this thegis for interrupt response

60
L Pt PR O PLIPC CO U RPC VT R SE RN T (R T P Ay P A SR Ty o
- AT A - \ N R R e O AN
) ‘: 3 lé‘n.' WSRO PRS WHEY ST .!.; M MU X M W (OO s L e talassa Gty

P
~Pwr et e a y

g -~
RO

N o a & 2 2 €

-

a a1 K

Catwh LY -

time present results (or even study the problems) of interest
to the embedded applications developers? This question will be
answered by reviewing how the interrupts feature is currently
implemented and used, then expanding upon this review to
1identi1fy how the feature could alternatively be used. I will
then show that the benchmarks developed to measure interrupt
delay time for interrupts associated with task entries measure
the effects of the various uses of this feature.

Current Use of Interruptg Feature. Because compilers that

implement address clauses for task entries are just recently
becoming widely uged, there currently does not exist a body of
documented practical experience in the feature's use. I found,
however, through personal and telephone interviews with Ada
compliler and application researchers and developers that use of
task entries associated with interrupts is currently being
dictated by the compiler’'s i1mplementation of the feature or by
personal choice (Johnson, 1987). I found that some developers
were using compilers that restricted the interrupt-handling
task to be a single-entry task. Other developers were using a
single-entry task to handle each interrupt, even though their
compiler did not place this restriction on the feature's use.

I did not find, however, that this design of interrupt handling
tasks was based on an informed investigation of the efficiency
of posaible alternatives. These alternatives will be discussed

below.

Alternative Use of Interrupte Feature. The gemantics of

Ada tasgsking present a number of alternative methods for

61

R ideidhdt Dia e Aod A e B a dh o A a B e ALh A g i h A A A A A d A h-a Lie A b Sk g d ot l g h A A A A d A d A Aol Ak Al hd Al Bk Al A Sl el Ad Aaf Aol Aok dad tad Sl Sl ol Al Sl
3 R
-
:a
ﬁg associating any number of interrupts with task entries using an
5: address clause. One may wish to handle all of the possible
gl . interrupts in an application or just a gubset (even of size
R
Eﬁ one) . Agsume, for example, a developer wighes to handle four
':E of 16 possible interrupts in hisgs application. Although there
:3, are others, three possible designzs for the tagke are: (1)
’SZ declare one task with four entries, each aszsociated with one of
N the interruptz; (2) declare two tasks with two entries per
- task; or (3) declare four taske with one entry per task. The
_?. three major considerationsg, then, in the design of interrupt
i handling task(sg), defined by the syntax of Ada and the
,:‘ configuration of the target, are: (1) the number of interrupts
éﬁ to be handled; (2) the number of tasks to handle the
i} interrupts; and (3) the number of entries per task.
E: The benchmarks developed in this thesis form a
.22 representative sample of the various techniques for associating
.:; tasks with interrupt. Recall from Table 1 in chapter 4 that
\; INT_TEST1, INT_TEST2, INT_TEST3, and INT_TEST4 are all designed
v
Ef to handle a high number of interrupts (10) on the
%jg MIL-STD-1750A'g 16 possible interrupts (DoD, 19882:19), with
.:‘ designs ranging from 10 taske with one entry each to one task
;; with 10 entries. Thesze benchmarks produce a comparative
xf measure of interrupt delay time for the interrupts feature as
‘:& it i8 currently being used, and as it could be used. INT_TESTS
e
Ei? and INT_TEST6 test the task entry mix with a medium (three)
322 number of interrupts being handled. INT_TEST7 provides the
ﬁ& baseline, handling one interrupt with one gingle-entry task.
23 o2
Wi
d-
.

N N R s e TS TR S R PNt S R g OO
W = ‘ v, S PNV 0 " QOUOUROO)
‘ 0‘:'0':: ft N, .0; o it N R ANN R e R d fainilply »‘o‘ - A "‘ ittt o

s

14
-

y

2

'& By measuring the interrupt delay time for this feature az 1t 18
f; currently being used as well as for other possible uses, the
Fﬂ benchmarks provide the answer to the question: "How efficient
’S 1s this feature's (address clauses for interrupts)

;$ implementation?®

;Lf The reader might ask, "Does it make senze to write one

ESi task to handle a number of interrupts?” The anaswer is “yes,*
3;: becauze interrupts are often related, and the interrupt-

handling functions are similar. For example, if the operations

0
AR

Ll ::
y

‘e st
T

one might perform to handle a floating point overflow and a

LI
a

. s

fixed point overflow are similar, it would be logical to

e

‘:i localize these operations in one interrupt handling block.

:g The results from these seven benchmarks demonstrate how
o they provide comparative information on the efficiency of the
et compiler. Not only do they indicate whether the interrupts

j} feature is efficient enough for a particular application, they
;S also indicate the most efficient way to use this feature.

5% Some developers were not using Ada's interrupts feature
:f because they said it was more efficient to handle interrupts in
v the run-time executive or operating system. Others were using
.! the feature in only one way (one singe-entry task for each

ﬁ. interrupt being handled) and had not investigated other

ﬁﬁ . approaches. If the embedded systems developer is to write an
:5 ’ application that will execute as efficiently as possible, he
:ﬁ must know the most efficient way to use a particular feature
-

xg for his compiler/target combination. The benchmarks for

-
=
LA

interrupt delay time provide these measures of efficiency for

-

63

o

NOCPG, - N TN STy DETBYAL (5) 7 A e Y e TS e R .
PIRR AN O R TR .0!“0’: f’ % {'" SO SOOI 10 g R N T B e g e

T4

<

n

5

.,

4

'

. :}

o,
" . Y

.J

4

4

4

o

>

Jj the interrupts feature as it may be used in an application.

§)

: The benchmarks will either provide additional support for the

IA

single task/multiple entry method of interrupt handling in an

»

- application or prove it lacking and provide the embedded

G,

" applications developera the impetus to use alternative, more
%!

]

g efficient, designs for interrupt handling.

L d

>

A Performance Evaluation Test Results

ot
(This section will report the results of the benchmarks

_5 developed in this thesis. The benchmarks were compiled with
:2 only compiler B and run on the Sperry 1631 MIL-STD-1750A

)

‘; computer because B was the only compiler available during my
ﬁ research that implemented the interrupts feature. The results
‘? reported here, therefore, will not be used to compare the

relative efficiency of one compiler to another. The results do

} indicate that these benchmarks may be applied to compilers
15 supporting address clauses for interrupts to determine the most
: efficient use of the feature.

:Q Enumeration Representation Claugesg. Test A13_3_3C,

’l
g
' : designed to measure the effect of performing a succesgsor

‘ operation on an enumeration object given an alternate

- represgentation, wag run on one sBelf-targeting compiler,

"

Q compiler A. The result from this benchmark was a negative mean
5N .

‘ (tesat loop time - control loop time) and a large standard

2
& deviation. These results, skewed by the effect of the
,b_
:2 operating system on the benchmark, reinforced the need to avoid
i these distortions as discusgsed in Chapter 3.

:'

S

64

,

g]

e

‘

u,

* '4'-~‘ -'.-.' R RMERT S WY N T g "f"""

- P “ . Al ~ ‘v - ,*-- ,-- O LR RN | .".:P..-*\{
whu. ﬁV‘ X e s% o'«.uﬁ QOO nh mn&ﬁm».ﬂ ",.v\hﬂMNﬂn‘ A ...u*cv&: el sty iy

Address Clauses and Interrupts. The seven benchmarks for

measurement of interrupt delay time for interrupts associated
with task entries determined the mean interrupt delay time of
the floating point overflow interrupt. Thisg calculation was
based on 100 floating point overflows generated in a loop in
the benchmark. Additionally, the total elapsed time for the

benchmark is given as an indication of the overhead associated
with the various methods of interrupt handling. The results of

the benchmarks are presented in Table IV below. The mean and

Table IV
Interrupts Benchmark Results

Standard Elapsed
Mean Deviation Time

Test Name (seconds) (seconds) (seconds)
INT_TESTI 7.365 E-4 7.441 E-6 3.819 E-1
INT_TEST2 7.731 E-4 7.020 E-6 4.497 E-1
INT_TEST3 7.958 E-4 7.691 E-6 5.240 E-1
INT _TEST4 7.906 E-4 5.914 E-6 6.360 E-1
INT_TESTS 7.3985 E-4 7.64]1 E-6 3.799 E-1
INT_TESTS6 7.585 E-4 6.314 E-6 4.708 E-1
INT_TEST7 7.341 E-4 6.965 E-6 3.810 E-1

standard deviation were calculated using a sample of 100
interrupts generated in each benchmark. The sample size of 100
was chosen to ensure a level of reliability in the results, so
that a difference in the interrupt delay times could be
demonstrated if it existed. The mean, standard deviation, and

elapged time between the first and last floating point overflow

were calculated in the benchmark.

65

LA ada - sl o as e la - bu- e oal 00 ol aat ke e, marosar dher ek tad dad Soh diall Aak dad Sak Sl Aad Aak el Sad Sed il 4 7"'""'&"7""\.‘U'L-¢‘V‘&‘L"\"LY'\‘W“W\T

Assuming that the interrupt delay times are normally

' . distributed, I used a two-sample t test and a level of
significance of 0.0l to find that the mean interrupt delay time
for INT_TEST]1 was less than that for INT_TEST2, INT_TEST3, or
INT_TEST4 (Larsen and Marx, 1986:364). Likewise, I found that
) the mean interrupt delay time for INT_TESTS was less than that

¥ for INT_TEST6. The calculations for the two-sample t test are

) found in Appendix Q.

(Thege resulte show that the design of the interrupt

5

| handling tasks does have an effect on the interrupt

: delay time. Whether the benchmark is handling a high (10) or

]

: medium (3) number of interrupts, the most efficient approach in
termg of minimum interrupt delay time and tasking overhead (as

. measured by the elapsed time of the benchmark) 18 to write a

& gingle entry task for each interrupt being handled in the
application. This does not mean, however, that the gingle-

N entry task approach will be the most efficient for all

. compiler/target combinations. These benchmarks may be applied

3 to other compilers to determine the most efficient approach for

; particular applications.

{

; Summary

)

This chapter presented a certification of the validation

i and performance evaluation tests developed in this thegis, and

- reported the results of those tests on three validated Ada
compilera. Validation test design techniques and a design

; review were described to certify that the validation tests will

‘

R

- 66

.

-

‘.

q

3 PR PSR I ANE o ol S N R L P Tl B R e e T e e e et e e e T AR AN A AR Y

. R R N, Y > v AT ATATAENE AN Wy & S ORI
el Mol Lo o L S AT O LA K T At "\" RTINS N A 'f;'.'b‘,"%" 5

- _‘\
O
-_"i'
)l_'~\
e
¥ "\‘»
3 determine the validity of a compiler’'s implementation of Ada's
i
-x_!'.
133 address clauses and interrupts features. The benchmarks were
! certified by showing that they measured interrupt delay time
.:_\ -
uf for the interrupts feature as it is currently used and as it
o could be used.
Py
t
A The results of the validation tests for three compilers,
SO
f}: in which one compiler initially failed (and then later passed)
.K one test, were detailed. This reinforced the idea that a
b validated Ada compiler may not implement all of the untested
v,
!:ﬁ features correctly. Finally, the results of the benchmarks
T
i€ compiled with compiler B and executed on a Sperry 1631
427 Tt
L
o MIL-STD-1750A processor were presented, showing the single-
T
S
b, entry task approach for the design of interrupt handling tasgks
e
» "
re to be the most efficient approach for the compiler/target
e gstudied.
u
A
> The next chapter reviews how well the work in this thesis
o
~",
ﬂﬁ} solved the thesis problem, draws conclusions about this

research, and lists recommendations for future study.

N
~
<
¢

)
)

>,
a,

L}

2

e
AT Th

67

.l
13

T

[y

- -
Pl
LR

‘.
o @

v &
¥

<

- - -

LI IR

* S N AT
o ‘N’Crﬁ PO A
. e -

DI
v v -
0®, .l'.‘.h * . ‘.""

‘iu ‘.\"
S
L DL S

RNV SARCRCREEER TRORI
PRI ROAS AT n A RN WKk

e A A U AL o, A T e A
L ao hO‘. v 0‘!‘!'. !""‘I’; I MDA A WYL

4
~
e
B, VI. Conclusions and Recommendations
\l
o~
(This chapter summarizes how the approach used and scoftware
tfﬁ ’ developed 1n this research answered the questions posed in the
Y .
. -\'-
B thegisg problem, presents conclusions about this research, and
)" .
B,
v outlines areas for future research.
o
I The Problem Revigited
vt
s
v Recall from Chapter 1 that there were two questions to be
n answered by potential users of Chapter 13 features before these
B -
;if features were used in embedded applications: (1) does the
i _~.:
.;; compiler’'s implementation of the feature conform to the
L
definition of that feature in the LRM and (2) is the
,;f implementation of the feature efficient enough for the users’
.
2 application? The first half of the thesis problem, concerning

° the validity of the implementation of address clauses and

-
v

interrupts was solved by the validation tests written for those
features. The desi1gn techniques used in the development of

these tests, as discussged in Chepter 5, ensure a complete,

:Z accurate, and error-free test guite for Address Clauses and
+
‘o Interrupte.
L ,
- The gecond part of the thesis problem, the efficiency of
O
o the feature, was more difficult to define and quantify so that
T
4+
.:: 1t could be tested. At the outset, the two metrics used most
0.
" often to quantify ‘efficiency’ ™ were time (execution speed) and
Lﬁ gpace (amount of memory used). As the research progressed,
=y
..-J n
- time became the primary metric because of advances in the
9.
R memory capability of the MIL-STD-1750A processor.
Y
i\
4
3
o 68
e
_.

AT .,- MRS ARS \; oy ‘.' Sy N VALY ST e J, : TN ‘.‘\;.'-'."_.'. T T
B . o - - - "
SN > v R T, 00 0 ¥ ‘n".o ﬁ. a2t A M P B e N W,

e
.

-

S,
s
i

st
|]

a
LY

. . '.l.
LN G NS

s

e

»

Am Bt a Bba Aie Ris Sie Sbe d-a g aad

I was able to determine, through numerous i1nterviews, how
the interrupts feature was being used by embedded systems
applications researchers and developers. From thig I designed
a s8uite of benchmarks and support software that measured the
efficiency of the feature as it was currently used as well as
alternative uses allowed by the syntax of the features
specified in the LRM. These benchmarks, then, answer the
second half of the Qquestion in the thesis problem.

Therefore, this thesis shows that the problem can be
solved and demonstrates this fact by answering the validity and

efficiency questions for address clauses and interrupts.

Conclusions

At the beginning of this thesis project, I felt that the
emphasis of the research should be on benchmarking Chapter 13
features, and that validation of those features was a necesgsgary
(but not very difficult) step on the way to that goal. As the
research progreegsed, it became increasingly apparent that
validation and performance evaluation were complementary
disciplines of equal importance. Before Ada researchers
measure a compiler’s efficiency with benchmarks, they must know
that the feature or construct being studied is correctly
implemented. I compiler validation 18 not performed,
non-valid implementations may appear to be more efficient when
benchmarked because these implementations may not provide all

the capability of a valid i1mplementation.

69

M aid sl Ak atho R O sadiomed’ Bad? o aflc Sadh ol ol Salu Al Ak Adiia MR AR Aaacite Bra AN A S A i A Yt At Aol Aol Bolk S ,‘T

x
[y

[y

T,

()R
R P R
A [S W

L
a
3

» "; p
&+ “'\
S el

P
."'."_n"lt."o%‘x '.. ‘:1 . Iy

| S PR

4. .14 LI o .

. 1] . .
AR : A O b P

.
N

The approach used in this thesis project to determine the
validity and efficiency of compilers’ implementations of
address clauses and interrupts may be applied to other
features. This application assumes, however, that researchers
and developers can identify the features to be tested and how
to test them. The difficulty of this research is not so much
in the design of validation tests and benchmarks, but in
determining what to test, why to test it, and how to write a
valid test. I was able to prior:itize the Chapter 13 features
for study by interviewing Ada researchers and developers to
determine what features were most important to their
applications. I mistakenly assumed that there would be a
gtrong consengug among embedded application developers
concerning what was "most important”™ in Chapter 13. The
reality was (and 1is) that compiler implementationgs are being
improved just as new embedded applications problems are being
solved. No one has a list of exactly what the “problems of
embedded applications”™ are. Although there is some overlap,
each developer has his own set of problems, often unique to his
application.

Just as there are varying levels of Ada's use in
developing embedded applications, so too are there varying
levels of 1interest in the Chapter 13 features. Some developers
interviewed in this research said that they did not plan to use
any Chapter 13 features, because they felt that the same
functiong could be performed more efficiently with agssembly

language, JOVIAL, or other languages for embedded

70

a
'l
)
.

Al G

AT | [R A]

DECNEN |l"\..(l‘l‘h’.l"'.
co e Lt L et

N

el "~ ‘i
Tt v -
PR Yl

. N

[
L

ORI
& o K o

applications. DoD Directive 3405.1, which mandates the use of
Ada 1n new applications, should increase the interest in how to
test the validity and efficiency of Chapter 13 features.
Embedded applicationg developers will either use Ada or request
a waiver because the current technology cannot solve their
problem (DoD, 1987). In either case, these developers will
have to find objective answers to questions concerning the
validity and efficiency of Ada compilers, with emphasis on the
Chapter 13 features that are so vital to the succegs of
embedded applications. Whether Ada is or is not used for
developing new embedded applicationg, the decision will have to
be an i1informed one.

Validation and performance evaluation tests also generate
a positive result that is not part of their design, but is a
by-product of their existence. This result is the cause-effect
relationship one researcher found between the release of
compiler benchmarks for Ada language constructs and efficient,
complete implementations of those constructs in compilers
released after the wide distribution of those benchmarks. This
heightened cross-flow of information concerning efficiency,
validity, and shortcomings of various compiler i1mplementations
will increase the pool of knowledge about those
implementations, increase competition between compiler vendors,
and result in improved development toolg for those uging Ada
for embedded applications.

There has been some digcussion that the distribution of

the Ada Compiler Evaluation Capability (ACEC), desgcribed in

71

. NN

AT A S N O,
] \,’."-.‘-,w

T L L SARANERR
ror

W ATA

-.’--f-.-'-‘.';

SRASAS A ARERAR

.- . ATt
ORI e R N KOO

Laud Sad A4 . d and dhol ad Sk A B d 2 AN Aoe Sl T YRy Y W.ﬁm’“wr{“wwwﬂ“"lrdwvﬂ

Thagter 2, may be limited because of concerns about misuse of
~he ATET t¢ label compilers as “good® or "bad” with respect to
_r.e consgtruct or feature. Although the misuse of any
eva.uat:ion tcol 1s possgible, the potential for increase in the

¢! 1mplementations of Ada compilers, I feel, outweighs

-
L
a
. -
.-
¢

Y

*t~ reed *c rrevent m.guse of the ACEC test suite. The AJPO

D]

r:_..2 releace the ACEC to widegt possible distribution,
ferraps pliacing 1t on the Ada Software Repository, in a faghion
z.m.lar 2 that used for the SIGAda PIWG benchmarks, and
er>_..rage .te proper use with an aggressive education program.
“re of the gcals of this thesis project was to develop
terchmarks that could be applied to any Ada compiler targeted
tc the MIL-STD-1750A processor. As the research progressed, it
tecame apparent that the implementation-defined features of
ea~h comp:.er used 1n these benchmarks made it difficult to run
the berchmarks on another compiler/target combination. Just
because an embedded appl:i:cation 1s developed in Ada does not
necessarily mean that the application is portable without
modification. Because certain features and constructs used 1in
the application must be tailored to the underlying hardware,

gome redesign and modificatvion may be necessary to re-host the

a
L
+

‘v.".\
[P PRt |

application on another processor. The software engineering

]
« "y
P}

concepte that Ada enforces, (i.e. data typing, constraint
checking, etc.) will make thig process easier than it would be
with an application developed in assembly language, because
only the Chapter 13 features will have to be modified for the

arpplication to be run on the new processor.

72

0,
Py
a4 8 K

/

-

<@

Ty
v

g3
v

Recommendations for Future Research

'
v

2 .
P
A A

Although Ada compilers currently do not have to implement

*“A"

all of the features in Chapter 13, a complete validation test

{E: suite for those features would further stimulate development of
5;} implementations of Chapter 13 features. The goal of a future
;: research project would be to complete the ACVC test suite for
,Eﬁ Chapter 13 of the LRM. The current test design objectives of
the ACVC Implementers’ Guide may have to be extended to allow
D the tests to check memory locations, word length, data

ffi alignment, etc., using tools other than test software written
>;§ in Ada. Having the compiler check one feature, such as an

;; address clause, by using another feature, such as the ’'ADDRESS
izi attribute, is not the best way to validate compiler features.
éi If a compiler vendor is going to do a poor job implementing a
;,f feature, or do something that is not expected or illegal, one
,Ei would assume that he would be smart enough to avoid

b

inconsistency in his implementation by implementing a

e

A

complementary construct (in this case the 'ADDRESS attribute)

[}
N
PR in a gimilar fashion. For example, if one usges an address
{-'_0
E
;;; clause to store an object at location 500, but the
®
G implementation actually stores the object somewhere else, the
33N
fj compiler implementer may implement the ’'ADDRESS attribute to
o
‘:} return 500 when 1t is applied to the object in question,
, @
Iy indicating that the implementation of addresgs clauses was
i
A
'Jf valid. Thig future reaearch would develop alternatives to
-:\
,'; uging one compiler construct to determine the validity of
9.
s, another.
AP
0
,\'
';»\.' 73
5
~
@y
.
v
.4
L C. <
4) K

I R R N T R A N N R RE P R SRty
'J'_;: B, CE g :; !‘. A :\ :'x_,s. :\._;\y___,, N NI O ;ﬂ

T T T P T —— ’l"l_'"‘llll'.ll'.l-."I'I!II'!llllll!l'l!.!l!”_l'!lgl"!lu'!'l_l‘

Another research topic, determining the areas of weakness

of the ACVC, may require the efforts of many researchers. Some

have argued that by allowing compiler vendors to know the exact

.{/'

gtructure of the ACVC test suite, minimal implementations may

<

LWhnhy

be designed to pass the specific testsgs. This future research

g ‘J{l,{ £

project would seek out the holes in the ACVC, and develop tests

(AR
it

to fill those holes. The project would determine whether or
not an implementation that does not comply with all of the
specifications in the LRM could possibly pass the validation
test suite. In short, it would validate the validation test
suite. Some may argue that developing validation tests for a
validation test suite could be recursively applied
indefinitely. Although a validation review of the ACVC test
suirte could not be proven complete and valid itself, it has the
potential to uncover and correct errors and incompleteness in
the ACVC test suite. The importance of the ACVC test suite to
the development of Ada compiler technology makes this project

well worth the effort.

.
B
‘
*
"y
8
4
]

r ‘1
P B

74

R

e @
NN M h

.

A

-

oo AP A AL T A ST o S B P T R e T R T AT AT T e Wt AW ™ P
DA [A Wt N % ™ L S T By »

e g NV?V 'ﬁh SN 4 b gfﬁ'fa#~%1(ffﬁm' S “\}'

A g RS R R , N Wy %00 T o u o a0, 00 070, W #9100, 000,600 010, P S G W 30 % MO)

A
P2,
.-
8
<
b Y
\V
-
<
R
1,
A
]
s
s

X
n_ % a
LR 8

RN ” g g o -
» R S T N

2 o

REAE SSARAns

L,

1]
L4

-
33

1
o

A]
‘\":"".J‘A

P

Appendix A: Validation Test Ob)ectives

This appendix contains the test objectives for the Chapter
13 validation tests developed in this thesis. All of the
information in this Appendix 1s taken from the ACVC

Implementers’ QGuide (Qoodenough, 1986:Ch 13, 39-40, 53-%56).

Enumeration Representation Clause Test Objectives

Tl. Check that a record representation clause cannot be given
for:

- an expanded name that denotes a record type;

- a name declared by an object declaration;

- a name declared by a subtype declaration;

- a type declared by a private type declaration prior
to the full declaration of the type;

- an incomplete type prior to the full declaration of
the type;

- a type having a subcomponent of an incompletely

declared private type, prior to the complete

declaration of the composite type;

a type that 18 not an enumeration type

Implementation Guideline: In each case, use a clause that, if
pocssible, would be allowed for the actual type or for the
completely declared type.

T2. Check that two enumeration representation clausesg cannot
be given for the same type.
Implementation Guideline: The two clauses ghould specify

identical representations.

T3. Check that an enumeration representation clause cannot be
given:

- in a package gpecification for a type declared in an
inner package aspecification;

- in a package or task gpecification, for a type
declared in an enclosing package specification or
declarative part;

- in a package body for a type declared in the
corresponding package gpecification;

- after the occurrence of a body in a declarative part.

T4. Check that an enumeration representation clause cannot be
given after a forcing occurrence for the type.

75

(LY

N - l'

A
k)

'.‘" " 'l
Sdal]

ror P R MY

RO

T5. Check that i1f an enumeration representation clause can be

given, it can be given after an occurrence of the type name in
an expression of a pragma.

T6. Check that the name of the enumeration type (or a subtype
of the enumeration type) cannot appear as a choice in the
aggregate or in one of the expresgsions.

Implementation Guideline:X The name should be used in an
attribute (e.g., 'VAL) that delivers a value of the required
type.

Tl1l. Check that an enumeration representation clause cannot be
given for a derived enumeration type if the derived type
definition imposes a constraint of if the parent type has
derivable subprograms.

Implementation Guideline: Write gseparate tesgts for these two
casee.

T12. Check that integer codes must be given for each
enumeration literal of the type.

Implementation Guideline: Check that neither too many nor too
few codes ce: be given.

Check that nonstatic integer codes are not allowed.
Implementation Guideline: Use nonstatic universal_integer
expresgsgilions.

Check that a choice cannot be nonstatic.

T13. Check that the same integer code cannot be given for two
enumeration literals.

Check that the integer codes must obey the predefined ordering
relation for the type.

Implementation Guideline: Include some aggregates in which
chotceg do not appear in the order defined for the type, and
for which an ordering operator has been explicitly declared.
Check that a choice in the aggregate must be a value of the
enumeration type.

T14. Check whether an enumeration representation clause can be
given for an enumeration type. 11 g0, check that such types
can be uged correctly 1n ordering relationeg, in indexing
arrays, in attributez, and in generic instantiations.
Implementation Guideline: Include cases where the integer codes
have negative valueeg and in which they do not have consecutive
values.

Implementation Guideline: Combine this check with various
formg of aggregate: all choices named (when some enumeration
literals are character literals); no choices named.

Check that an enumeration representation clause can be given in
the vigible or private part of a package for a type declared in
the vigible part.

Implementation Guideline: Repeat the checks for enumeration
repregentation clauses given in a generic unit.

76

U

RO

g

/N

L] !“‘n

W

‘:: T15. Repeat T14 for a derived enumeration type, including when
. the parent type has an enumeration representation clause given.

0

b,

r T21. Check that the aggregate in an enumeration representation

W clause cannot be considered ambiguous.

AN Implementation Guideline: Declare more than one one-

:'ﬂ dimensional array type that has the enumeration type az its
- index subtype.

o

N T22. Check whether an enumeration representation clause can be

' given for a type derived from a type declared in a generic
instantiation.

Address Clause Test Objectives

,nﬁ T1. Check that the expression in an address clause must have
:,:’, the type SYSTEM.ADDRESS.

E:,\‘

" T2. Check that an address clause is illegal if a with clause
6 naming the predefined package SYSTEM does not apply to the unit
ol containing the address clause.

qu Implementation Guideline: Check for objecta, subprograms,

::} packages, tagks, and entries.

*} T3. Check that if an address clause ig allowed, a with clause

naming SYSTEM need not be given for the compilation unit
containing the address clause as long as such a clause applies

¢ to the unit.

:{ Implementation Guideline: Check for address clauses in package
ub‘ bodies, eubprogram bodies, and subunits. Include a check for
.‘

L)

generic unit bodies and subunits.

x s

T4. Check that an addreseg clause cannot be given for a named
number, an exception, a formal parameter of a subprogram,

e A

o entry, or generic unit, a generic formal object, a generic
r:x subprogram, a generic package, a loop parameter, an object
2 dezignated by an access value, a glice, or a component of an

Py object.

o Check that an address clause cannot be given for a library unit

:3 or a generic unit.

o

,ﬁﬁ T5. Check that an address clause cannot be given for an

6 expanded name or for a name declared by a renaming declaration.
Implementation Guideline: 1Include renamings of objects,

subprograme, packages, tagks, and entrie=s.

T6. Check that an address clause cannot be given:
- in a package gpecification for an object, a package,
etc., declared in an inner package 8Bpecification;

- in a package or task specification, for an object,

77

D

A N U RO
' W AR ‘Q”ﬁ.f,u ,5,'“ e 2‘\."-'& 3

o
"
v
;ﬁ; a package, etc., declared in an enclosging package
K specification or a declarative part;
~E$ - in a package body for an object, package, etc.
declared in the corresponding package sgpecification;

S - after the occurrence of a body in a declarative part.
ﬁ}j ’ Implementation Guidelilne: In particular, check for a
[+ gsubprogram body that also acts as the declaration of
.,ﬂ, the subprogram.

N T7. Check that an addresg clause cannot be given for

IR gubprogram if more than one sgubprogram with the same name 1i=s

:: declared explicitly in the same package specification or

iﬁ declarative part.
2O Implementation Guideline: Include a generic instantiation and
lpi a renaming declaration as well asg a subprogram declaration.
(Check that i1f an address clause can be given for a subprogram,
g 1t can be given when the gubprogram is overloaded by:
gy - a gubprogram declared in an outer declarative region
-~ or library package,
;’: - an entry declaration (when the subprogram ig declared
b in the tasgk body),

.‘ - an implicitly declared derived subprogram.

&Y
,:3 TB. Check that the expression in an address clause mugt be a
f:, aimple expresgaion.

N

-

Til. Check whether an address clause can be given for an object
declared in a declarative part.

. Implementation Guideline: Use a variable and constant having

,jﬁ the following typee: enumeration, integer, floating point,
#: fixed point, array, record, accesg, private, limited private,
A and task.
'ﬁ: Implementation Guideline: Include a check for declarative
parte of subprograms, blocks, and package bodies.
ot T12. Repeat T1l for generic units.
Py
/
‘~j T13. Check whether an address clause can be given for an object
” declared in a package specification.
.’ Implementation Guideline: Uge a variable and a constant having
3 the following type: enumeration, integer, floating point, fixed
i point, array, record, acceszs, private, limited private, and
iﬁ task.
vgm Implementation Guideline: Include a check that the address
.jh clause can be given in the private part for an object declared
6 in the vigible part.
¢
IR
5& Tl14. Repeat T13 for generic packages.
D
?- T21. Check whether an address clause can be given for a
Qﬁ subprogram declared in a declarative part by a subprogram
:i declaration or a generic instantiation.
o
Y
oY 78
#
4
o
‘.'?
X

ey (] G OO O WO P 00000, e W0y €7 T 070,50 N RSy Ny OCOBOY .l; . r- 0 | M) (O <N
\-*f'*,‘n“’u’,l‘ Y ‘.l"v‘\‘ﬂ?\'dtl’:’b’a‘l’. AN ‘*."a'*‘t"nf"r“'0"'0"’«“'>t"l’"u‘.et‘= sttt e e Bl i R Vb e,

PAPAIAT

-
[l
.

Py
A 213 B
R S

S
4 e,
P R Y

& Ty

. - -y A et .
Sh(s L Y% 'y ' v W P
L 8 1

RE 1P AN

A
Lttt

aanane” W
AAASAAN L

i
2 a
."‘)" e

.s l&

g 1‘!’ ” :."

FaAS NN

A, 4__
“ X R
":',\'-“J..‘

;~
SN

o

FaCAZLK

-

L ®

)
J“
»

‘
...

Implementation Guideline: Check for a declarative part of a
block, a package body, a subprogram, and a task body.

T22. Check whether an address clause can be given for a
subprogram declared 1n a package a subprogram declaration or a
generic instantiation.

Implementation Guideline: Include a check that the clause can

be given in the private part for a subprogram declared in the
visible part.

T31. Check whether an address clause can be given for a package
declared in a declarative part by a package declaration or a
generlic instantiation.

Implementation Guideline: Check for a declarative part of a
block, package body, subprogram, and task body.

T32. Check whether an address clause can be given for a package
declared in a package by a package declaration or generic
ingtantiation.

Implementation Guideline: Include a check that the clause can

be given on the private part for package declared in the
vigible part.

T41. Check whether an address clause can be given for a task
type or a single task declared in a declarative part.
Implementation Guideline: Check for a declarative part of a
block, a package body, a subprogram, and a task body.

T42. Check whether an address clause can be given for a task
type or a single task declared in a package
Implementation Guideline: Include a check that the clauge can

be given in the private part for a task or a task type declared
in the visible part.

Interrupts Test Objectives

T1. Check that an address clause cannot be specified for an
entry that has a parameter of mode out or mode in out.

T2. Check that an address clause cannot be gpecified for an
entry family.

T3. Check that the name in an address clause for an entry
cannoct be an expanded name.

T4. Check that an addregs clause for an entry cannot be given
within the declarative part of the task body.

Tll. Check that 1f an implementation supports address clauses
for entrieg, such a clause can be given for an entry of a tagk
type as well ag for an entry of a gingle task.

79

Lz L] ANl a0

0 OV OO0 BOL Vo A ALy *& VN o Inls 7o 'Eﬂ
Mﬂﬂﬂﬂﬁ"ﬁﬁ~#ﬁnh%.&ﬂmﬁﬂﬂwwﬁ'JWM WMMM&&M%:JM ! i 'ﬁ&&d

e &
“‘l/ "'-“

N . & - !
e

-
-

("1'1 AR

AEN s 3
’ 1% s 2% %S

.

/. "’. 'I. "‘.

-r
.

v
P AR RA R I

.
R R N

ok

kY

NN

LY
>

NS

W

iy

&
LIGR S

1
2t 8

A
w e r

|

A s
N fn’.\t‘.f&‘..a'd"

Appendix B: Validation Test Software

This Appendix contains a sample of the validation tests
developed in this thesis. A machine readable version of the
goftware is available from the Air Force Institute of Technology,
Department of Mathematics and Computer Science (ENC), WPAFB OH
45433 .

Validation Test Naming Convention

The name associated with the validation testa conforme to
the naming convention for the tesgts in the ACVC tesgst suite. The
tegt namesg will be of the form NAME.ADA, with NAME containing up
to nine characters defined below:

Character Posgition Description

1 Clases of test (A,B,C,D,E,L)

2 AlG chapter number (Hex)

3 AIG section number (Hex)

4 AIG subgection number or
letter

5,6 AIG test objective number

7 Test sequence letter (A-2Z)

8 Compilation sequence digit
(0-9) (Not required)

9 "M’ indicateg main program

(for several compilation
unite) (Wilson, 1987b).

By my using this convention, the tests are more likely to be
understood and accepted by those familiar with the conventions
of the ACVC test suite. This convention thus helps to satisfy
the requirement that the tests clearly identify their
objectives. The name of the test does this by referring to the
test objectives in the ACVC Implementers’ Guide (Goodenough,

1986) and Appendix A to this thegis.

Enumeration Representation Clauses Test Names

BD300O1A.ADA
BD3002A . ADA
BD3004A.ADA
BD3012A.ADA

80

0 { B (r f)-ffl af v
' ‘l“... ‘.".I. ‘0.|‘| M"::l) "’ “ ". .'." "W .‘||"|.' " ." 2% i W ’. WY

« M
.-
;; Erumeration Representation Clauses Sample Test:
-
Sttt ettt ittt ittt
(-- BD3Q0lZA

RN - -- Check that*t 1nteger codes must be given for each enumeration
. -- literal c¢f the type

LS -
N

- ~-- Check that nonsgstatic integer codes are not allowed (in
e -- giving i1nteger codes to each enumeration literal of the
v -~ tyrpe’
. -
- - - stk Capt Dan Joyce

- - Vers:ion 11

L - Date Jur. 87

vrzcedure ED3012A(one :string;

x> two: string,;

-~ three: string;

58 four: string:

o five: gstring) 1is

';‘ “yre enum_type 18 (al,a2,a3,ad,ab);

- tyre enum_typel is (al,a2,a3,a4,af);

type enum_*type2 1s (al,a2,a3,a4,ab);
' for enum type use (1,2,3,4); -- Illegal, too few
~-- integer codes

~ for erum_typel use (1,2,3,4,5,6); -- Illegal, too many
b~ -- integer codes
::"- T

- for enum_type2 use (one'length,two’'length,three’length,
+. four'length,five 'length);

-- Illegal use of nonsgtatic
-- Universal integer for Choices

L8

‘:Q begin
K\~ null

ot
‘T. end BD3IO12ZA
[»"5‘;

"

3: Address Clause and Interrupts Test Names:

e BDS001A.ADA

*‘.1

';i BDS002A . ADA BDS002B. ADA BDS5002C . ADA BDS5002D.ADA
By BDS0OO0OZ2E . ADA

w7
-:ﬁ ADSQ03A.ADA ADS5003B. ADA ADS5003C . ADA ADS003D.ADA
A8 ADS003E. ADA

o

j; BDS004A. ADA BD5004B. ADA BD5004C . ADA

i

:“ \! 81
R

o

l.:

A

o N e i)

- NS RS W

e W At B L e
1 r

~ ’) "

A e e NI
RO RLY J " L) A h b () M L X g
ﬁﬁm«ihn RN NS e YO0 T AR N A KNI ORI 0 YA

-

' 4

j BDSCOSA.ADA BDS00SB. ADA

;f BD50064.ADA BDS006B. ADA BDSO0O6C . ADA BDS5006D. ADA
(BDSOOGE . ADA

,ﬁ ADS007A.ADA ADS0O07B. ADA ADS007C.ADA BD5007A.ADA
-

g BD5008A.ADA

K.

s ADS0114.ADA ADS5011B. ADA ADSO11C.ADA ADS5011D.ADA
R ADSO11E.ADA ADS011F ADA ADS011G.ADA ADSO11H.ADA
P ADSO111.ADA ADS011J.ADA ADS5011K.ADA ADS011L.ADA
v ADSO11M. ADA ADSO11N.ADA AD50110.ADA ADSO11P.ADA
3 ADS011Q.ADA AD5011R. ADA ADS011S.ADA ADS011T.ADA
&
(“ ADS012A . ADA ADSO012B. ADA ADS012C.ADA ADS5012D.ADA
v ADSO12E. ADA ADSO12F . ADA AD5012G. ADA ADS012H. ADA
o ADS0121.ADA ADS012J . ADA ADS012K.ADA ADS012L . ADA
& ADS0O12M. ADA ADSO12N.ADA ADS0120.ADA ADS012P.ADA
- ADS012G.ADA ADSO12R.ADA AD5012S.ADA ADS012T.ADA
‘; ADS013a.ADA ADS013B.ADA ADS013C.ADA AD5013D.ADA
. ADSO13E.ADA ADS013F . ADA ADS013G.ADA ADS013H.ADA
Y AD501321.ADA AD5013J.ADA ADS013K.ADA ADS013L.ADA
- ADSQO13M. ADA ADSO13N . ADA ADS0130.ADA ADS013P ADA
- ADS013G.ADA ADS5013R. ADA ADS5013S.ADA ADS013T.ADA
: ADS014A.ADA ADS014B.ADA ADS014C.ADA ADS5014D . ADA
o ADS014E.ADA ADS014F . ADA ADS014G. ADA ADS014H.ADA
- ADS0141.ADA ADS014J . ADA ADS5014K.ADA ADS014L . ADA
-~ ADS5014M.ADA ADS0O14N.ADA ADS0140.ADA ADS014P.ADA
:& AD5014Q. ADA ADS014R.ADA AD5014S.ADA ADS5014T.ADA
1Y

- ADS021A.ADA ADS022A.ADA

S

o ADSC31A.ADA ADS032A . ADA

3

- ADS041A.ADA ADS042A . ADA

e

& BD51014A.ADA BDS101B.ADA

\"

¥ BD51024A.ADA

.;;

K BDS103A.ADA

1 @

N BD5104A.ADA

i

B ADS5111A.ADA

"

)

Ky

[

o

v, 82

>y

¢y

MY

L]

-

B T R LR R A TRt PR At R COTR R PR R CR SRR o)
b l‘.'_l.ﬁ’, . f" J‘;P‘I et e’ 5 7 n A A g "f,'

C o T W - W W Ly o
af n-f,; Sy 's-;t\ﬂ

.-,_:_.f\.'.r(._.'._:;\... P 4.~\,-~'.$‘. <,
s e 80 ASU U LA

: |
iy
. Address Clause Sample Tests
-- BD50C1lA
- -- Check that the express::: :.r. an address clause must have
’ -~ the type SYSTEM.ADDRESS
; -- Crheck 1llegal address ¢. ¢r. tc an object
\ -
. -~ Date: 27 July 87
-- Version: P2
, -=- Author: Capt Dan Joyce
with systaem;
prccedure BDSELLIA 13
subtype bad_address_type :: _.rnteger;
bad_addrezcs! - bad_address t,pe = 0
bad_addressZ : pocs:tive ;
bad_addrecss2 : integer =
bad_address4 : natural :-
bad_addrescs® : float := ¢
objectl : 1nteg:r;
for object]l use at bad_adirecszl;
- Trmon Address must be
- type SYSTEM.ADDRESS
Y obtject? Integer
. for object? use at bad_addrezal:
5 -- EZrror. Address must be
' -~ <¢i{ type SYSTEM.ADDRESS
» object3 : 1nteger;
) for object3d use at bad_addrescsl;
. -- Error. Address must be
-- of type SYSTEM.ADDRESS
,; object4 : integer;
~ for object4 use at bad_addrecs4d;
- -- Error. Address must be
K- -- of type SYSTEM.ADDRESS
P object5 : integer;
y for objectS usge at bad_addressS5;
-- Error. Address must be
-- of type SYSTEM.ADDRESS
begin
null;
end BD50O1A;
g
:
83
;
N
¢
a

R T S .

Ty &0

Sl s

R P T P R I PR L. R
R R YA G WY 2L e PRI R NI
l"l‘ &y .,g,; }.‘ '(£) ra.l.v“:' Ny ‘, ‘ X

Nt 2o 3o

.
Y Al

T)
i D RN bl I el AE LR N AR

-

- e~
- .
- AT,

-

L A8 S8 A alA ALA‘R e mta i i ama man o e aat Ser b otlar s Bat s s Beb dat e Sed Sa gud Bk UR A S ey S Alet et St A ia R et tlakalhe A Uhibattin aad ik alinfnk ol heddindd

-- ADSO!1lA

-- Check whether an address clause can be given for an object

-- declared 1n a declarative part.

-- This checks for enumeration type variables declared in the
- - declarative parts of subprograms, blocks, and package

- - bedies.

-- Date: 24 July 87

-- Version: 1.4

-- Author: Capt Dan Joyce

with SYSTEM:

with ADLRESS_PACKAGE: use ADDRESS_PACKAQGE:
with HEPORT: use REPORT;

procedure ADS0OI1A is

beg:rn

TEST{"ADE0O11A ", Check whether an address clause can be given °~ &
"for enumeration type variables declared in the ° &
‘declarative parts of subprograms, blocks and package ~ &

"bodies .)

BLOCK]: declare

-- Thi:s tests the declarative part of subprograms
procedure procl is

type enum_type is (red, blue, green) ;
enum_objl: enum_type;
for enum_objl use at object_address:;
hegin -- procl
null,;

end procl;
begin -- BLOCK]1
null .
end BLOCK!;
BLOCK2: declare

-- This tests the declarative part of blocks
type enum_type ig (red, blue, green);

enum_obijl: enum_type;
for enum_objl use at object_address?2;

84

N ALY LN N

.',’.'_ .,’f““u,.u‘..,' ' F.. . »\"‘.-v- - .1 w‘ N 111.1 o ¥y ‘r ‘ *k‘ -v'-' .‘
M "".‘t‘:’l " n "V, /Iy"‘f e .3.".'.".“'?'0'..!;!-'- 84 T, .:.‘"ctl.::lfcfﬁ.o.ﬁ‘m Y .0'\2"¢!"' DAL !‘t‘l‘t‘i‘a‘t'\.\.‘ W .a'!‘-".‘-' AN N Y,

)
{

A R Aed Bt Aob ek ek th o 20 ik s b i e A -m v sing e i Sler-She A b Sliarafena b b ko cnlie a2 Ao ai otk Al dad Sah ok b 0 et b a0 AL RAA st A DA S Ahd ot abd ARt abd ol WO

4

)

” begin -- BLOCK?2
a nuill;

v end BLOCK2:

e o

BLOCK3: declare

A P

L
v

X package PKG 1is

\ end PKG:
< package body PKG is
. type enum_type ie (red, blue, green);
- ernnum_obil: enum_type;
K> for enum_objl use at object_address3;
' end PKG@:
> begin -- BLOCK3
- null;

A end BLOCK3;

N

d RESULT;

- end ADSO11A;

5

e
; Interrupts Sample Tests
.
. -~ BD5102A
I:~ -- Check that an address clause cannot be gpecified for
:: -- an entry family.
. -- Date: 8 Sep 87
& -- Version: 1.2
o -- Author: Capt Dan Joyce

; with system;

‘ with ADDRESS_PACKAGE; use ADDRESS_PACKAQGE;

al package BDS51024A is

)
N type interrupt_level is range 0 .. 2;
R
4 task taskl is
™ entry family_entryl (interrupt_level);
5 for family_entryl use at entry_address®;
o -- Illegal. Can't give
§ -- address clause ¢ -

" -- family entry

", end taskl;

" end BDS102A;
[

.J
- .

- -

L

5

o

-

¢

W

-]

A AT LN A L . T -,
’&"‘l “‘. M"’:"‘:"‘- .". A I‘.‘J r'. Ala DA FOLl ¥ o W o

-- This tests the declarative part of package bodies

~-A189 554 VALIDATING AND EVALURTING ADA’S (TRADI
EPRESENTRTION CLAUSES AND I () RIR FORCE INST OF
H WRIGHT-PATTERSON AFB OH SCHOOL Gl
F/G 12/5

UNCLASSIFIED D 0 JOVCE DEC 87 AFIT/GCS/NA/87D-2

NL.

Lo f .8
b
[io.d
s
I =
L

| Yy

| TR
i il TION T

O MO
Latnty

O .'

a®

E

n
L8]

F—
MN
o

E

#|
i

ll=:

‘-‘.t‘ ‘

(3
v

LY
.‘i. A\

':’19
$"o
.,:'.:‘
’;;:;.: package body BD5102A is
O
4
B task body taskl is
if begin
IR loop
M$. gelect
f‘ accept family_entryl (0);
00 or
i accept family_entryl(l);
') or
AL accept family_entryl(2);
KN end select;
& end loop;
;Q: end taskl:
o end BDS5102A;
KX
o
. J e
tos -- AS111A
Ppe -- Check that if an implementation supportas address clauses
(N
‘b' -- for entrieg, sguch a clause can be given for an entry of a
ﬁ“ -- task type as well as for an entry of a single task.
" -
~
\ -- Date: 9 Sep 87
bf -- Version: 1.5
e -- Author: Capt Dan Joyce
. with system;
“f with ADDRESS_PACKAGE; use ADDRESS_PACKAGE;
' package ADS111A_PKG 1is
ﬂ..
o’
P task type tagk_typel is
;) entry entryl;
gl for entryl use at entry_address5;
h end taesk_typel:
N -- Legal. Should be accepted
h’ -- 1t implementation supports
drge -- entry addresses.
gt task_objectl : task_typel;
Ay
¥
" task task2 is
" entry entry2;
.ﬁﬂ for entry2 use at entry_address6;
‘.a ’ end task?2;
o % -- Legal. Should be accepted
:»ﬁ -- if implementation supports
vy -- entry addresses.
g end AD5111A_PKG;
'l'
e vt
o
1% 86
‘l
;:i"l

L X
"

Ly
4
"’..

(LN Wy - X " ‘ Y e 8, OF " F) Ol .Q‘ (IR "! i“‘!_'. .':, "a’l"’l f‘ I’ ‘. " LA t‘ " .,_,.‘
":f".?nf‘A'nsl':'l'cti"!l'a .!J.f,!.l‘f‘ﬁ,u" :.O):.?!". .‘.,‘f.’.,ﬂ,.t,\,’,‘l}.ﬂli.m.vlh- "'n:“\!,’ﬂi:ai‘fo"".9, ”'Q'Eil.“h."~.?'t“".~‘”*:‘!‘ oyt .'ﬁ,“c"‘.f. ‘!'»"L"<.‘.£"!‘."'."'“ "

package body AD5111A_PKG is
task body task_typel is
begin
accept entryl;
end task_typel;

task body task2 is
begin
accept entry2;
end task2;
end ADS111A_PFPKG;

with ADS5111A_PKG; use ADS5111A_PKG;
with REPORT; use REPORT;
procedure ADS111A is

begin

~- The next two task calls allow the tasks to terminate
~- and therefore the main task ADS111A can terminate

task2.entry2;
task_objectl.entryl;

TEST("ADS111A ", Check that an address clause can be given "&

‘entries for a taak type as well ag a single task °);
RESULT;
end ADS111A;

X »
R AR WA

AR

. oy . . s . g v '
IOV ODOLOOOOOL RO OO O T O OO OCOOOOOOI LA OO D AR POLRIUN) LN
L T'.J x":l' 5.‘«‘3;’.‘ :’,"."“"' : .v 'Q‘.'!',.h.‘al',‘l. 'i.‘;"‘q.’i._tii.'.é ’.‘."“A_" ",‘J._. ﬁ,'l,"i‘_g’h"ltg i._qa“‘:’l ,‘. ,'%“,‘

2

\ T Ty - sod - v - - L T Y T T W Y T VW Y T va—

i
‘.o‘*
4
)
gh Appendix C: Performance Evaluation Test Software
B
e
i
F“ I used the following PIWG programs to support the
o, ;
] benchmarks developed for Chapter 13 features: A000001,
§h) containing the package DURATION_IO for reporting timing
]
W results; A0O00012, containing the CPU_TIME_CLOCK for DEC VAX
LX)
'
L)
41 computers; A000021 and A000022, containing the specification
0
oy
;k and body of the REMOTE_GLOBAL optimization control package. I
g also mcdified the PIWG package A000050 and the procedures
.')’
Kro
;, A000052, AO00053, A000054, and AOO0O0S5 to return CPU times from
)
l! in the format I needed in this benchmark. The source for this
, package and these modified procedures isg included in thie
Py
+ ..J
¢ appendix.
o
el
i: The machine readable code for these modules is8 currently
W available on the SIMTEL20.ARPA Ada Software repository, in the
150
K
N directory PD:(PIWG.ADA>.
*“
b The performance evaluation tests for the prototype feature
‘i (enumeration representation clauses) and a sample of the tests
bk for interrupt response time is given below. The machine
* g
: readable form of these tests ig available from the Air Force
é? Institute of Technology, Department of Mathematics and Computer
!
e Science (ENC), WPAFB OH 45433.
i
32
2: Al3 3 3C Source Code
Ny
-’: This benchmark was designed as a prototype to learn more
v,
{ﬂ
'¢: about benchmarking Chapter 13 features. As a test for the
ol
9.
.a
NY 88
W)
W
)
ot
i)
. < LI Ly oy W Wy Wy W W W PP e sy -_._-...‘.r__r-..;.'.j-*.’-(.-. -‘(r.'(.’r Coie o
':'I.:’l‘e.:‘l‘;‘l.! \:"a‘.'s‘. l".‘t".)",.l‘,‘i‘?'l AU '2:‘!’»‘0 K r l".‘l‘!‘l ! |'1.PA':.0 " ! o R a n s l WML O

.
W

R

efficiency of a compiler’'s implementation of enumeration
representation clauses it is not complete because it tests only
the successor ('SUCC) attribute. A complete benchmark would
have to include tests for a wide range of enumeration objects

with all of the enumeration type attributes and operations.

-- Test Name: Al13_3_3C

-- Author: Capt Dan Joyce

-- Date: 8 Jun 1887

-- Test Description: This teat is designed to determine the

-- processing overhead associated with enumeration types

-- whoge representations have been modified with an

-- enumeration representation clause from Chapter 13

with A000050; use A000050;

with REMOTE_GLOBAL ; uze REMOTE_GLOBAL ; --control optimization
procedure Al13_3_3C ig -- main procedure to execute

type enum_type is (a00,a0l1,a02,a03,a04,a05,a06,a07,a08,a09,

al0,all,al2,al3,al4,al15,al16,al17,al18,81l19,
a20,a2l ,a22,a23,824,a25,a26,a27,a28,a29,
a30,a3],a32,a33,a34,a35,a36,a37,a38,a39,
a40,a4l ,a42 ,a43 ,844,a45,a46,a847 ,a48,a49,
a50,a%1,a52,a53,854,a255,a86,a57,a58,a59,
a60,abl,a62,a63,a64,a65,a66,a67 ,a68,a69,
a70,a7l,a72,a73,a74,a75,a76,a77 ,a78,a79,
a80,a8l,a82,a83,884,a8%5,a86,a87,a88,a89,
aS0,a9l ,a02,a83,a04,a095,a06,a07,a08,a89,
aloo):

type enum_type2 igs (a00,aCl,a02,a03,a04,a05,a06,a07,a08,a09,

al0,all,al2,al3,al4,al5,al6,al17,al18,al9,
a20,a2l,a22,a23,a24,a25,a26,a27,a28,a29,
al0,a3]1,a32,a33,a34,a35,a36,a37,a38,a39,
a40,a4) ,a42 ,a43 ,a44,a45 ,a46,a47 ,a48,a49,
a50.,a51,a52,a53,a54,a55,a56,a57 ,a58,a59,
a60,af6l,a62,a63,a64,a65%5,a66,a67 ,a68,a69,
a70,a7],a72,a73 ,a74,a75,a76,a77 ,a78,a79,
a80 .a8] ,a82,a83,a84,a85 ,a86,a87 ,a88,a89,
ag0,afl],a02,a093,a94,a05,a06,a87 ,a08,a99,
aloo):

for enum_type2 use (0,10,20,30,40,50,60,70,80,980,
100,110,120,130,140,15%0,160,170,180,180,
200,210,220,230,240,250,260,270,280,290,
300,310,320,330,340,3%0,360,370,380,3060,
400,410,420,430,440,450,460,470,480,490,

89

o 1 R R R ey T g o K A A R AP
BARAM AN RN RO LA AL f',v"_',"hr“.ﬁ",: ORI

(]
z.‘.’ ’,"’,.‘ .,," P

¢
o ?n.l.. 0

o
KoY

L 3 i

B
Ve
Ol
N
oy $00,510,520,530,540,550,560,570,580,590,
ﬁﬂ 600,610,620,630,640,650,660,670,680,690,
qb 700,710,720,730,740,750,760,770,780,790,
i 800,810,820,830,840,850,860,870,880,890,
o 900,910,920,930,540,950,960,9870,880,990,
X . 1000) ;
R
%\ enum_object : enum_type := a00;
‘ﬁ@ : enum_object2 : enum_type2 := a00;
V; begin
kh A000052A;
,'." - -
fﬁk -- Control loop
.'.0 --
o tor J in 1 .. 10 loop
o GLOBAL := 0 ;
G enum_object := enum_type'first;
:q: for INSIDE_LOOP in 1 .. 100 loop
;:o, GLOBAL := GLOBAL + A_ONE ; -- typical control loop is
&n REMOTE ; -- these two statements
"‘ enum_object := enum_type’'succ(enum_object);
= end loop ;
.: end loop :
1o A000053A;
ﬂ‘“ AO00054A;
s -- Test loop
\::: --
i for J in 1 .. 10 loop
Tty GQLOBAL := 0 ;
f&} enum_object?2 := enum_type2’'first;
N for INSIDE_LOOP in 1 .. 100 loop
2, GLOBAL := GLOBAL + A_ONE;
:;;.' REMOTE ;
?S enum_object2 := enum_type2’succ(enum_object2);
-y end loop ;
Qﬂ end loop ;
1 8.8 -
i a000055A;
§$ end Al13_3_3C:
'Qs‘.‘ A000050 Source Code
:ya -- A000050
! : -- Thie 18 a package that contains modified versgions of AQ0005]
bk -- thru A0000S4. These procedures gave the wall and c~u time
mﬁ -- in variables in the A000050 package rather than writing them
*f -- to a file each time a measurement is taken. 1 am concerned
R -- that the overhead for the I1/0 is distorting the timing
34' -- measurements. Therefore, the data will be written at the

-- end, after all measurements have been taken

R 90

A L L) L0

f
3] L3
) ¥
Wt et

y T O A) S XTOEOBOOON W M o T Y
A0 Undl) " ; AOAGHON 0 QOO I WY DALY DN DN NN
“N“ﬂNNW“WW*MWWMWﬁﬂﬁw”&hka#ﬂﬂﬁwﬂﬁﬁnﬁﬁﬁﬁﬁﬂm

S Lk [N

-- USAGE : A000052A (1

-- control procedure

-- A0OO0OO53A (2)

-- AOO00054A (3)

-- test procedure

-- AOOOO0S55A (4)

-- RESULT

-- ((4) - (3)) - ((2) - (1)) is the measurement

-- The second expression takes out the time to make the
-- measurement. Ag a check, (3) - (2) ghould be close to
-- (2) - (1)

with CPU_TIME_CLOCK ; ~- various choices on tape

with CALENDAR : -- uged for WALL clock times

with TEXT_IO ; -- for printing times

with DURATION_IO ; -- for printing timesg

package A000050 is

CPU_SECONDS_START_CONTROL : DURATION;
CPU_SECONDS_STOP_CONTROL : DURATION;
CPU_SECONDS_START_TEST : DURATION;
CPU_SECONDS_STOP_TEST : DURATION;
CPU_SECONDS_DIFF_CONTROL : DURATION;
CPU_SECONDS_DIFF_TEST : DURATION;
CPU_SECONDS_DIFF : DURATION;

WALL_SECONDS_START_CONTROL : DURATION;
WALL_SECONDS_STOP_CONTROL : DURATION;
WALL_SECONDS_START_TEST : DURATION;
WALL_SECONDS_STOP_TEST : DURATION;
WALL_SECONDS_DIFF_CONTROL : DURATION;
WALL_SECONDS_DIFF_TEST : DURATION;
WALL_SECONDS_DIFF : DURATION;

procedure AOO0052A;
procedure AQO00053A;
procedure AQO00054A;
procedure AO00055A;
end A000050;

package body A000050 is=s

procedure AOO0O052A i=s

begin
CPU_SECONDS_START_CONTROL := CPU_TIME_CLOCK;
WALL_SECONDS_START_CONTROL :=
CALENDAR.SECONDS (CALENDAR.CLOCK) ;
end AQ00052A;

91

4

procedure AOOOOS53A is

begin
CPU_SECONDS_CZTOP_CONTROL := CPU_TIME_CLOCK;
WALL_SECONDS_STOP_CONTROL :=
CALENDAR.SECONDS (CALENDAR.CLOCK) ;
end AOOOO053A;

procedure AOOOO0S54A is

begin
CPU_SECONDS_START_TEST := CPU_TIME_CLOCK;
WALL_SECONDS_START_TEST := CALENDAR.SECONDS (CALENDAR.CLOCK) ;

end A0O0O0054A;

procedure AOOQOO55A is

MY FILE :TEXT_I0.FILE_TYPE;

begin
CPU_SECONDS_STOP_TEST := CPU_TIME_CLOCK;
WALL_SECONDS_STOP_TEST := CALENDAR.SECONDS(CALENDAR.CLOCK) ;

CPU_SECONDS_DIFF_TEST

CPU_SECONDS_STOP_TEST -
CPU_SECONDS_START_TEST;

CPU_SECONDS_DIFF_CONTROL := CPU_SECONDS_STOP_CONTROL -
CPU_SECONDS_START_CONTROL;
CPU_SECONDS_DIFF := CPU_SECONDS_DIFF_TEST -
CPU_SECONDS_DIFF_CONTROL;
WALL_SECONDS_DIFF_TEST := WALL_SECONDS_STOP_TEST -
WALL_SECONDS_START_TEST;
WALL_SECONDS_DIFF_CONTROL := WALL_SECONDS_STOP_CONTROL -
WALL_SECONDS_START_CONTROL;
WALL_SECONDS_DIFF := WALL_SECONDS_DIFF_TEST -

WALL_SECONDS_DIFF_CONTROL;

TEXT_I0.CREATE (MY_FILE, TEXT_IO.OUT FILE, °A0000S0D"):
TEXT_10.NEW_LINE (MY_FILE);
TEXT_IO.PUT(MY_FILE, ° CPU SECONDS DIFF CONTROL: '):
DURATION_I10.PUT (MY_FILE,CPU_SECONDS_DIFF_CONTROL) ;
TEXT_I0.NEW_LINE(MY_FILE,1);
TEXT_I10.PUT(MY_FILE, ° CPU SECONDS DIFF TEST:)
DURATION_IO.PUT (MY_FILE,CPU_SECONDS DIFF_TEST) :
TEXT_10.NEW_LINE(MY_FILE,1);
TEXT_10.PUT (MY_FILE, ° CPU SECONDS DIFFERENCE: ")
DURATION_10.PUT (MY_FILE,CPU_SECONDS_DIFF) ;
TEXT_10.NEW_LINE(MY_FILE,2);
TEXT_I10.PUT(MY_FILE, °"WALL SECONDS DIFF CONTROL: °):
DURATION_IO.PUT (MY_FILE,WALL_SECONDS_DIFF_CONTROL) ;
TEXT_10.NEW_LINE(MY_FILE,1);

02

W 1 f e, F A ‘PN [g LY J y K 1 MG GOOUMSAOAS W
45, () N L o AU 80U SEARITA TN RS A N A KL MK A
.‘f.ﬁ:.":.‘l'..".‘tt.‘o‘.f”g.i‘g."""‘q.' !."‘..li.t L) 4‘ (] .f.."'."!l‘,'!'o\‘h‘{' * v " ! 'n‘?' »"0"’7-".."'.‘ -"l‘v‘"‘."l?"..".)'n"'t [\ '.t (AR .b'. [N

PRGN WA .
[‘A"'u"'."‘,-"‘

TEXT_IO.PUT(MY_FILE, “WALL SECONDS DIFF TEST:)
DURATION_IO.PUT (MY_FILE,WALL_SECONDS_DIFF_TEST) ;
TEXT_IO.NEW_LINE(MY_FILE,1l);
TEXT_IO.PUT(MY_FILE, °"WALL SECONDS DIFFERENCE: ")
DURATION_IO.PUT(MY_FILE,WALL_SECONDS_DIFF);
TEXT_IO.CLOSE(MY_FILE) ;

end AOOOO0OSS5A;

end A000050;

Sample Benchmark for Interrupt Delay Time

-- INT_TEST4

-- Thisz is a benchmark that will measure the interrupt delay
-~ time associated with a task as an interrupt handler.

-- Task INT_HANDLE_2 TO_1l4 hag an entry tied to interrupt 3
-- with an address clause. The accept block of this task

-- ehould be entered whenever interrupt 3 is raiged.

-- Thie benchmark will raige MIL-STD-1750A interrupt 3

-- (a floating point overflow) by causing a floating point
~- overflow in the main procedure.

-- Thieg benchmark calls RESET_INT_VECTORS_7_AND_9 and

-- QGET_ALL_TIMES 1in package TIME_PACKAGE_1750A to set up and
-- pretrieve precige CPU time measurements that are not

-- avallable with package CALENDAR.

-- This benchmark has 1 TASK with 10 entries, each tied to
-- a 1750a interrupt.

-- Author: Capt Dan Joyce
-- Date: 27 Sept 87 1325
-~ Vereion: 2.4

package QLOBAL_INTERRUPT_MAKER4 is
function FLOAT_RETURN return float:
end GLOBAL_INTERRUPT_MAKER4;

with TIME_PACKAGE_1750A; use TIME_PACKAGE_1750A4;
with GLOBAL_INTERRUPT_MAKER4;

with TEXT_IO; use TEXT_IO;

procedure INT_TEST4 is

package time_1750a_io is new FLOAT_IO(time_1750a);
use time_1750a_1io0;

float_object : FLOAT 1= 0.500000 % 2.0 #» 127,

max_values : congtant integer := 100;
type TIME_ARRAY_TYPE is array (1..max_valuesg) of TIME_1750A;

L el it T I S e A A A L TS

-- Variables for statistical calculations
-- The address clause is used so those memory

93

LA R T T REY
) .
AR e e St b

" -- locations may be examined on the 1750A to

ﬁ -- verify the accuracy of the values reported

2t ettt R e R R e
o mean : TIME_1750A := 0.0;

Y for mean use at 16#6000%;

.Y

< ' .

R variance : TIME_1750A := 0.0:

b. for variance use at 16#%6004#%;

i‘g

I sum_del_tim : TIME_1750A := 0.0;

for sum_del_tim use at 16%6010%;

)

K sum_del_tim2 : TIME_1750A := 0.0;

2‘ for sum_del_tim2 uszse at 16%6014%;
[
(, -- Time collection Variables

l'. ___

\

R4 before_interrupt : TIME_ARRAY TYPE := (others => 0.0):
o after_interrupt : TIME_ARRAY_TYPE := (others => 0.0):
K\

)

My clock_biag_start : TIME_ARRAY_TYPE := (others => 0.0):
L clock_bias_atop : TIME_ARRAY TYPE := (others => 0.0);
);

& int_delay : TIME_ARRAY_TYPE := (others => 0.0):
'ﬂ for int_delay use at 16*7000*'

[

R start_benchmark : TIME_1750A := 0.0;

y for start_benchmark use at 16#6020#%;

‘N stop_benchmark : TIME_1750A := 0.0;

:r for stop_benchmark use at 16%6024%;

(

l’ . i
o main_timera_return : TIME_1750A := 0.0;

" main_dummyb_return : TIME_1750A := 0.0;

0..

~} task_timera_return : TIME_1750A := 0.0;

k) pragma SHARED(task_timera_return);

") task_dummya_return : TIME_1750A := 0.0;

). pragma SHARED (task_dummya_return) ;

p task _dummyb_return : TIME_1750A := 0.0;

;g pragma SHARED (task_dummyb_return)

2

s T S T T - -
:& -~ Interrupt Handling Task Specifications

hd task INT_HANDLE_2 TO_l4 is

L pragma PRIORITY(3);

! entry interrupt_2;

: for interrupt_2 use at 2;

W entry interrupt_3;
f for interrupt_3 use at 3;

U

"

" 94

N d ; [| Y () SANANG HNOAL0
"f'.'."’:' i ',H:"‘,»":-‘ e A e EA M .'g"‘,“' "»z"."‘ '.1” "l\'" i“ ‘ SOt " "' " " '4"','?“ “;"“’ : "'hi" T

ROAGAAD

entry interrupt_4;

for interrupt_4 use at 4;

entry interrupt_6;

for interrupt_6 use at 6;

entry interrupt_8;

for interrupt_8 use at 8;

entry interrupt_10;

for interrupt_10 use at 10:

entry interrupt_11:

for interrupt_11 use at 11;

entry interrupt_12;

for interrupt_12 use at 12;

entry interrupt_13;

for interrupt_13 use at 13;

entry interrupt_14;

for interrupt_1l14 use at 14;
end INT_HANDLE_2_TO_14;

- e - e - e M e N R T L T T T T L e e e e M G e e e e e e e e e e AR e e e e e
e W W e S R L en e L G e B W R R e R e e e M G R SR e e e R e R Gm e e e W e e e = e -
- - e e e wn — . e e W R @ NS R e e e e e e R e e e e - e -

- e = e W s s em e e e G - P AR e e e e e e e e W e e e e

taak body INT_HANDLE_2_TO_14 is
begin
loop
gelect
accept interrupt_2 do
get_all_timea(task_dummya_return,
task_dummyb_return);
put_line(“in interrupt_2 accept’);
end interrupt_2;
or
accept interrupt_3 do
~- This 18 the accept that handleg the --
~- floating point overtlow --
get_all_times(tagk_timera_return,
task_dummyb_return);
end interrupt_3;
or
accept interrupt_4 do
get_all_timea(task_dummya_return,
tagk_dummyb_return) ;
put_line(°"in interrupt_4 accept”);:
end interrupt_4;
or
accept interrupt_6 do
get_all_times(task_dummya_return,
task_dummyb_return);

05

Ol
R

P

b .(l.l,l,l-" OG0 :hlri_,"l [X j‘lv DO ;".
C T e e T T R e e e oa

S RCTNTRANIA BATRTA RS AANN 8 g
N ;'1'_4“'! C'I,.‘g""l‘t‘u‘i'&’i n"hf"l_‘"i“‘.’f‘!}?.,.is“.i;.sh.' % 5‘5,.3“ “,“"':v""-.;"‘ .“.i(*

]

put_line("in interrupt_6 accept’);

iy end interrupt_6;

- or

v accept interrupt_8 do

" get_all_timez(task_dummya_return,
> task_dummyb_return);

- put_line("in interrupt_8 accept’);

:& end interrupt_8;

4 . or
. accept interrupt_10 do
get_all_times(task_dummya_return,

b

H task_dummyb_return) ;
i put_line("in interrupt_1l0 accept’);
Ny end interrupt_10;
N or
(accept interrupt_11 do
Wy get_all_timees(task_dummya_return,
~; tagsk_dummyb_return);
K put_line("in inverrupt_11 accept”);
o end interrupt_11;
o) or
b accept interrupt_12 do
ol get_all_times(task_dummya_return,
b tagsk_dummyb_return);
f put_line("in interrupt_12 accept”):
oy end interrupt_12;
::- or
accept interrupt_13 do
1y get_all_times(task_dummya_return,
:@ task_dummyb_return) ;
i put_line("in interrupt_13 accept’);
}5 end interrupt_13;
ﬁk or
‘, accept interrupt_14 do
31 get_all_times(task_dummya_return,
o task_dummyb_return);
o put_line("in interrupt_l4 accept”);
08! end interrupt_14;
o end gelect;
end loop;
i end INT_HANDLE_2_TO_14;
N e e memeememmmemmemmcemmmmmmemmrm——m————————-
19
L -- This procedure calculates the mean and variance
:} -- for the interrupt delay time
. procedure STATISTICS_AND_RESULTS is
., elapsed_bench_time : time_1750a := 0.0;
ﬁR n : time_1750a := 0.0;
.
5 begin
mean = 0.0;
o variance = 0.0;
ﬂb sum_del _tim = 0.0;
l:'
0 96
R
LJ
Acl'

B et im ot M Aot atNTmexTar e an et ATt K R - e e mime .
AN TS WO Ay AT, A S A (A OOGOOAOA NN OO OO R RN
‘:* e, T L D I e L ' RGNG R .,ﬁ‘mﬂntmﬂfﬂhﬁfﬂﬂ"‘iJﬂhﬂ}ﬂﬂﬂﬁﬂfﬂﬁﬂfﬂfﬂlﬂﬁﬂﬂﬂﬁﬂ.ﬂ'ﬂﬁﬂ3ﬂfﬂ?ﬂdﬂfﬂ?ﬂﬁﬂ.\fr

« -
) OO0 ", 0) \
‘|','.'..Q“‘.l':.!':"':'l‘: l‘. . . \ I“ !.i b .(‘| e “ l"iﬁ‘ :..h .. [} ‘."’."“' .‘l "‘ . N ‘. .‘.Ql‘ 2‘. "ﬁ.' ‘.' "!“'t“““‘ “. " “’Q C' ‘!“" .\' ‘i'; ‘.f ‘f; (U

i.'.‘.
;ﬁ' sum_del_tim2 := 0.0;
+ L0
'0.
ay for 1 in 1 .. max_values loop
? ——
e -- The bias of the GET_ALL_TIMES call ieg
s . -- added back in
4#. ___
ﬁ{ int_delay (i) := after_interrupt(i) -
AS ’ (before_interrupt(i) + clock_bias_stop(i) -
1
e clock_biasz_sgtart (i))
o8 sum_del_tim := sum_del_tim + int_delay (i)
:EW sum_del_tim2 := sum_del_tim2 +
K ¢ (int_delay(i) * int_delay(i));
‘a8 end loop;
\a‘;'a
s n = time_1750a(max_values);
mean := sum_del_tim / n;
j%” variance := (gsum_del_tim2 - (n¥mean*mean)) /7 (n - 1.0);
¢
\"
‘; new_line;
Evs put(“start :°);
& put(start_benchmark) ;
A~ put(® stop : ")
‘:j put (stop_benchmark) ;
oy put(” elapsged time : 7);
. elapsed_bench_time := stop_benchmark - start_benchmark;
vy put lelapsed_bench_time) ;
o
W
%b new_line;
e %y .
k) put(" n = ")
%J‘ put{(n);
;) put (- mean = ")
put (mean) ;
Y put (" wvar = °):
o put (variance) :
;ﬂ' new_line;
i::‘.
'6 end STATISTICS_AND_RESULTS;
O."(
;ﬂ begin -- INT_TEST4
~$
%;: RESET_INT_VECTORS_7_AND_9;
f.{: GET_ALL_TIMES(start_benchmark,
®: main_dummyb_return);
. ‘i
5$: _ for i in 1 .. max_values loop
-".; --
g -- The first 2 clock calls are used to factor out
el -- the time a GET_ALL_TIMES call will take
S
o
-;2
"o o7
1]
A"
.»1
u'v‘a
ay

P e o
Ay v & Y

»
-

(ARLIL T

L
»

-

TS5

XX

DO

)

-
-

TSI @S A7,

[

i QX AR ORO N 0 BN RO
¢! A_‘.fn“ft".ft“,i‘».ft',-‘cf,'ﬁ‘,fi’.‘,l‘..ft‘.f\"fo',ft?a‘l'nfl'nb.i“m R e,!':“'!:.l_'i,"_t (N

GET_ALL_TIMES(clock_bias_start(i),
main_dummyb_return) ;
GET_ALL_TIMES(clock_bias_stop (i),
main_dummyb_return) ;
GET_ALL_TIMES(before_interrupt (1),
main_dummyb_return) ;
float_object :=
float_object + GLOBAL_INTERRUPT_MAKER4.FLOAT_RETURN;

-- This will cause an overflow
after_interrupt(i) := task_timera_return;
end loop;

GET_ALL_TIMES(stop_benchmark,
main_dummyb_return) ;

abort INT_HANDLE_2_TO_14;
STATISTICS_AND_RESULTS:

end INT_TEST4;

package body GQLOBAL_INTERRUPT_MAKER4 i=s
function FLOAT_RETURN return float 1is
begin
return 0.50000 * 2.0 #x 127:
end FLOAT_RETURN;
end GLOBAL_INTERRUPT_MAKER4;

o8

‘e
KN

J
p'l‘\'l

s

VeaTky " s Ke - .
O ‘!"h'« ":‘-‘s‘:'o"'a PR

-
".“.'; 'O.m‘h""

4,
A
i
_,‘
" Appendix D: Validation Test Results
o
'L
?‘ This appendix contains the results of the validation tests
l.‘
.m . that were run on the three compilers in this thesis. A
o compiler either passes the test, fails the test, or a test is
I' -
:;'
) ruled inapplicable because the compiler does not support the
;f feature in the manner it is tested, indicated by N/A.
[}
o
B
i Enumeration Representation Clauses
thy
¥
: Test Compiler A
)
)
o BD3001A Passed
° BD3002A Passed
= BD3004A Passged
K- BD3012A Passed
,.‘u
f: Address Clauseg and Interrupts
B,
" Test Compiler A Compiler B Compiler C
.
& BDS001A Pagsed Passed Passed
3
BDS5002A Pagsed Passed Passed
T BDS5002B N/A N/A N/A
BDS5002C N/A N/A N/A
"! BD5002D N/A N/A N/A
v-‘." BD5002E N/A N/A N/A
D
s
Iy ADS5003A Passed Passed Passed
R AD5003B Passed Pagsed Pagsed
§ AD5003C Pagsed Pagsed Passed
¢ ADS003D Passed Passed Passed
' ADS5003E Pagsged Passed Pagged
'
' BD5004A Passed Passed Passed
. BDS5004B Pasgsged Pagsed Pagsed
g* _ BD5004C Pagsed Pagsed Paagsed
0
]A BDS00SA Passed Passed Pagsed
o BD500OSB Pagsed Passed Pagsed
Lt
:Q 99
o
\)
o
"
"

00 xt Fet et 1P R G NN
O 'o .'".'-..'~‘~'4'.'03.'-'.'o'a'ﬂ‘4' 20"f:" ~" ’1.o'th’l o Ttk .e" 008 '4‘:'6,» et "."' AN X KADIARAIEAN AL

o3

v::.l)

h$ Test Compiler A Compiler B Compiler C
o

l. 1

A BD5006A Passed Passed Passed
E?' BD5006B Passed Passed Passed
" BD5006C Pasgsed Passed Passed
:h BDS006D Passed Pasged Pagsed
e BD5006E Pasgsed Passed Passed
’ ;

40

et AD5007A N/A N/A N/A

oy AD5007B N/A N/A N/A

qﬁ AD5007C N/A N/A N/A

o

1$§ BD5007A N/A N/A N/A

)

PN
(L BDS5008A Passed Pagsed Pagsed
l"

kﬁ ADSO11A Pagsed Passed Pagsed
o ADS011B Passed Passed Pazgsged
ﬂﬁ ADS011C Passed Pasgsed Pagsged
o ADS011D Passed Passed Pagsed
® ADSO11E Passed Passed Passed
N

o ADSO11F Passed Pasged Passed
L AD5011G Passed Passed Passed
o ADSO11H Passed Passed Passed
b AD50111 Passed Passed Passed

ADSO11Jd Passed Passed Passed

*

Q: AD5011K N/A N/A N/A
A ADSO11L N/A N/A N/A
N3 AD5011M N/A N/A N/A

B ADSO11N N/A N/A N/A

:y AD50110 N/A N/A N/A

) AD5011" N/A N/A N/A
;w5 AD5011Q N/A N/A N/A

4

Vi)
3'. AD5012A Passed Passed Pasgsed
® ADS012B Passed Passed Pasgsed
o ADS5012C Pasgsed Passed Passed
" AD5012D Passed Passed Passed
Y ADSO12E Passed Passed Pagsed
AL

‘s

Wl AD5012F Pagsed Pagsed Passed
‘é : ADS5012@G Pagsed Passed Pasged
: ADS0O12H Passged Passed Pagsed
P

,~j , ADS50121 Pagsged Pagsed Pagsed
ﬁ\' AD5012J Passed Passed Pagsed
\ ‘

) AD5012K N/A N/A N/A

D. ADS012L N/A N/A N/A
XD ADSO12M N/A N/A N/A

[¢’

e 100

o

w

0.

0

2

"

Uity 00 Q0

O B h O Q0L
) S O) LA ASAIAGION
OGSO EICOC R MR A RICHN RRNARKRY

R Al A AGACAGIND0 5 SRRSO 1".' o~ T
‘,fl‘.' '64‘.10‘!;;‘(5“‘ ..‘0“.i.'.b‘q"l“‘?‘."0“:"". ...0. FOSS .3‘0:!‘5'50.“..“.‘,."-“'.' ﬂ.’.!' S‘:;"‘t.‘ _.IC'g‘l.\'.‘

.
4 .
; t- Test Compiler A Compiler B Compiler C
N.
A ADSO012N N/A N/A N/A
" ADS50120 N/A N/A N/A
= ADS012P N/A N/A N/A
Lo ADS012Q N/A N/A N/A
18
$; ' AD5013A Pagsed Pagsged Pagssed
) ADS013B Pagsed Passged Pagsed
N} ADS013C Passed Pagsed Pasgeed
" AD5013D Passed Passed Passed
K AD5013E Pagsged Pagsed Pagsed
K
o S
A ADSO13F Passed Passed Passed
ADS013G Pagsed Passed Passed
R ADS013H Passed Passed Passed
'g\ ADS50131 Pagsed Passed Passed
‘%} ADS013J Pagsed Passed Passed
R 2
)
ey AD5013K N/A N/A N/A
‘ ADS013L N/A N/A N/A
oty AD5013M N/A N/A N/A
o ADS013N N/A N/A N/A
3 ADB0130 N/A N/A N/A
D>
b AD5013P N/A N/A N/A
ADS013Q N/A N/A N/A
o ADS5013R N/A N/A N/A
h.: AD5013S N/A N/A N/A
2%
,%ﬁ ADS014A Passed Passed Passed
» ADS014B Passed Pasgsed Passged
;) AD5014C Passed Pagsed Passed
% ADS014D Passed Passed Passed
RN ADS014E Passed Passed Passed
»
[r
Wi ADSO014F Passed Passed Passed
zdﬁ ADS014G Pagsed Passged Pagsed
o . ADS014H Pagsed Passed Pagaed
v ADS0141 Passed Passed Passed
zﬂ AD5014J Passed Pagsed Passed
A
A AD5014K N/A N/A N/A
) ADS014L N/A N/A N/A
On) AD5014M N/A N/A N/A
’ ADS014N N/A N/A N/A
>)
N AD50140 N/A N/A N/A
:. ADS014P N/A N/A N/A
: ADS5014Q N/A N/A N/A
ry ADSO014R N/A N/A N/A
i AD5014S N/A N/A N/A
(“

‘ 101

(e T L e Vb) o) 1AV !
| .,n! ,n!.:;,,inf¢f\ 3, '.‘n', i'! a‘ ."‘.' W ‘.0 ’4‘0‘.t *.oq‘ 0“,g‘f. ‘!1\‘!|‘ij.|.,,v'?‘e.0,u 0.1 'i i.. ..‘ ..’s.. 'a,. .. OO .'a.. OOy l..'l‘q'!’g.l‘e Wprenndn

Test Compiler A Compiler B Compiler C

ADSO21A N/A N/A N/A
ADS022A N/A N/A N/A
ADS031A N/A N/A N/A
ADS5032A N/A N/A N/A
ADS041A N/A N/A N/A
ADS5042A N/A N/A N/A
BDS101A N/A Passed N/A
BD5101B N/A Pasgssged N/A
BDS5102A N/A FAILEDS N/A
BDS5103A N/A Passed N/A
BDS5104A N/A Passed N/A
ADS111A N/A Passed N/A
Totals Compiler A Compiler B Compiler C
Passed 58 63 58
Failed 0 1 0
N/A 52 46 52

5 This failed test was passed by a subsequent version of

compiler B.

102

O LRI S
W Tt gh e

AOCAOOBOIO NI CAOS OO MR
At T e e et e S gl

Appendix E:. Performance Evaluation Test Results

{ Results of Prototype Benchmark

{; The results shown below are the differences in the control
: and test loop execution times, in seconds, of the Al13_3_ 3C

?P benchmark (test_loop_time - control_loop_time); they are

presented here as an example of the result

! benchmark. The numbers in square brackets
N
(number of the first result in that row.
‘ﬁ Chapter 4 describes how the test vers
N
‘ could be faster than the control version,
K
® negative difference.
5,
>
. Compiler A Results
"
5 -0.0300 -0.0100 0.0200 0.0700
0.0001 0.0099 0.0 -0.0601
k- {11} 0.0100 0.0200 -0.0200 0.0
. 0.0 -0.0001 -0.0200 0.0100
.
G (21] 0.0200 =-0.0100 0.0200 0.0100
-0.4800 -0.4600 =-0.4700 -0.4401
¥
,. [31] 0.0100 0.0 -0.0300 -0.0100
f\ 0.0200 0.0001 -0.0200 0.0199
4y
9 (41] -0.0300 0.0 -0.0200 0.0
€ 0.0 0.0199 ©0.0100 0.0990
.{ (51 -0.0099 -0.0700 =-0.0100 0.0100
o -0.0400 0.0200 -0.0200 0.0100
4
7,
v (611 0.0400 0.0099 0.0200 0.0
-0.0200 0.0200 0.0 ~0.0100
A]
Lo [71] -0.0100 0.0 0.0100 -0.0200
J.
>
', Mean = -0.0264453 Seconds,
, Standard Deviation = 0.1186431 Seconds.
L)
"‘-_
L~
R 103
-
LS
=
®
!.'
'

i 2T 5N, -\-l? -prp -

* 1
1y ity ¥) ..I'- 0'-’! 5 0 e oy g h e, ,.4. ‘v. GO RN .'J‘. “. L Aa

8 obtained

index the

ion of the

generating

0.0400
-0.0100

-0.0100
0.0200

0.0890
-0.4200
-0.0200

0.0990

0.0300
-0.0100

-0.0100
0.0100

0.0100

n
'\ MO "0 OO

from this

trial

benchmark

the

'i.p'l‘ v . 'O "|" .1

-

'.. 'l ||

L]
a,'

Appendix F: Detailed Description of Time Package 1750A

;ﬁ Introduction

:; This appendix describes the detailed development of the
% . TIME_PACKAGE_175CA, which contains three procedures used to

? return the current elapsed time from the timer registers

,

3. available on the MIL-STD-1750A architecture. This appendix

g explains how each of these procedures was designed, followed by
(R the assembly language and Ada source code for these

o procedures. Much of the information found in thie appendix is=s
g extracted from MIL-STD-1750A (DoD,1982) -- the reader is

; directed to that document for further detail on interrupt

:e handling and assembly instructions for the MIL-STD-1750A

i architecture.

- i3

A crucial 1link in the development of benchmarks to
measure interrupt response time was the development of a method

for precise, accurate measgsurement of the elapsed CPU time for

o G X

this operation. TIME_PACKAGE_1750A consists of three

-

" functions: (1) an assembly language routine that resets and
’f‘ »

)

bi redefines the interrupt service routines for MIL-STD-1750A

92;

¢ interrupts, (2) an assembly routine to retrieve the current

K value of the two MIL-STD-1750A timer registers and the number
> of interrupts that have occurred, and (3) an Ada package that
i ’ other Ada procedures can "with® to retrieve CPU times. Each of
; theee will be described in detail below.

v,

2

T

l, »

) 104

3

Kl

o ™

SRTATIT T S AT edd NI ' R R O Nt R h L A A MO S P, W
L G N N 'Q" OROSOMHCUATIA IR SHA g ol R D USROG AR U IO DRSO

A

X

‘-
v -
-
-

e, 88
'.'H‘:‘J et ®

<
2

ﬂ'v“‘rﬁr

Background

Among its general purpose registerg, the MIL-STD-1750A has
two 16-bit registers known as Timer A and Timer B. When a
MIL-STD-1750A processor is started up, or reset, both Timer A
and Timer B are set to zero and are incremented every 10 and

100 microseconds, respectively, and count in the following

sequence:
000016' 000116' C e, 7FFF16. 800016' C FFFFIG‘ 000016'
000116

Whenever the timers increment from FFFF16 to 000016' they each

generate a MIL-STD-1750A interrupt. Timer A generates
interrupt 7 and Timer b generates interrupt 9 (DoD, 1982:19).
The current elapsed time, then, may be calculated using the

following formulas:

Ela = [(Ia * 65,536) + Ta] = 10 / 1000000.0 seconds
or,

Elb = [(Ib *» 65,536) + Tb] « 100 /1000000.0 seconds
where

Ela = Elapsed time (using Timer A)

Elb = Elapsed time (using Timer B)

Ia = number of Timer A interrupts

Ib = number of Timer B interrupts

Ta = current value of Timer A register

'I‘b = current value of Timer B register

Although both Timers should report similar results, with Timer
A having more precisgion, both timers were used in

TIME_PACKAGE_1750A as a check to ensure that the values being

105

e PN g
PERRFE L Lt

-~

-_-
.t-

-‘
gl

-

A\ f"‘»."."-u".

>
» &

- xaNOD
VRN

Ko

returned were valid. In order to calculate the elapsed time,
TIME_PACKAGE_1750A must keep track of the number of times
interruptsa 7 and 9 have occurred, retrieve the values of the

Timer A and B registers, and perform the conversion shown

above.

Interrupt Counting

In order to count the number of interrupts 7 and 9 that
occurred, I had to modify the interrupt linkage pointers for
those two interrupts. I wrote an assembly language routine
that 18 called RESETIV, which resets the service pointers for
thoge i1nterrupts.

Whenever an interrupt occurs, the current state of the CPU is
gaved, and the CPU reads a series of three 16-bit words
starting at the memory location indicated by the value in the
Service Pointer. The first two words are loaded into the
Interrupt Mask and the Status Word, respectively. The third
word contains the new instruction counter, and is the first
ingstruction of the interrupt gervice routine. When RESETIV is
called, it resets the gervice pointer for interrupt 7 (or H8) to
another three words of memory, the third being the address of
the firet instruction of the new interrupt 7 (or 9) service
routine declared in RESETIV. All this routine does is add one
to memory location 500 (or 501 for interrupt 9). These memory
locations are reserved for this use because two 16 bit integers
are declared in the TIME_PACKAGE_1750A and assigned this

address with an address clausge.

106

. N . B -
) < (} Ly b St W .Y (1 ‘. Y () “ - f A f .' {g¥) A ol
Nt ".n.,.l.‘.y,. Lty ,n,g‘.-,‘:u,"o,"t,',c,.li.‘.a, .t,f(l‘!I-.l'.t,f‘c...u,f.n,t.v,.‘c. A A P AR RN AU R NN S

T

1S

W

J'

g

5; RESETIV ig linked to the Ada procedurs

R)

;b RESET_INT_VECTORS_7_AND_9 with a pragma INTERFACE statement.

!

‘* When a procedure calls RESET_INT_VECTORS_7_AND_© then the

M4

»j service pointers are reset and the interrupt service routines
)

2,

X

defined in RESETIV start keeping the interrupt count.

The RESETIV source code ig given below.

-~
3

PR

RESETIV Source Code

(A AR E R R XXX R EEEEEEEEEEE AR EE R AR EEEEEEEEEEEZEZEEEEREREERERRRRR R X XN X X

TN)

*
», »
} # RESETIV
*
° * Name: Reset Interrupt Vectors
L # Description: This assembly language routine will reset the
b L] interrupt vectors for MIL-STD-1750A interrupts 7 and 9,
N * which correspond to the timer A and timer B clocks
N » resetting to 0000 (from FFFF), or “wrapping around°. The
" » Interrupt service routines provided in this program will
» increment a counter that keeps track of the number of
Y, * interrupts. By returning the current value of the timers
,f * and the number of times they have wrapped around, one may
' * determine the current elapsed time without calling a
:' * predefined [glower] system time routine, such as Ada’s
:5] (tm) CALENDAR package.
»
h * References:
) * MIL-STD-1750A, (notice 1), 21 May 10682, U.S.
:4 » Printing Office. [Pages 10-2] explain interrupt pointers,
o * service routines, etc.]
*
'b * Author: Capt Dan Joyce (with much help from 1Lt Marc Pitarys)
s * Date: 6 Sep 87
l\ * Versgion: 1.4
n]
': LA A EE R EEEEERREEEESEXEEEE R A S EEEEEEEEERE RN R R R RN ER SRS SR SR RN ER X N
EXPORT RESETIV
‘ MODULE RESETIV
[} ’
A RO EQU 0
Yy Rl EQU 1
ho- R2 EQU 2
e R3 EQU 3
' R4 EQU 4
N R5 EQU 5
&
iy 107
'
o
o
W
¢ l‘":". n"'o'..‘- o"". l‘,'l .‘0'..?". A l‘l‘, .. ’-"-‘.l';‘t ORCAR f‘ i-":“‘l. y ‘w's, .”' ! '.“.‘v‘..':...‘n'...t"‘a oty ‘0.,..'!.0. oL .o‘"1"’!'0.:.'...‘.J"-".‘t"'.u:"-0.'.0.‘0'.'::'

- o o W W WU WU T WY W TOw Y ST T www hiriniiteiudainiii ittt
0
[4
-
"
]
o R6 EQU 6
B R7 EQU 7
"y R8 EQU 8
W RS EQU 9
) R10O EQU 10
- R1l1l EQU 11
. R12 EQU 12
, R13 EQU 13
“E R14 EQU 14
‘ R15 EQU 15
3 ;
iy .
v JC 7 ,RESETIV : BRANCH TO THE PROGRAM BEGIN
N ORG 00500
TICKNTA DATAT 0000 :TickntA & B count the number of times
(TICKNTB DATAT 0000 ;TimerA & B have wrapped around (0000)
o) f
? IVEC? DATAT V7ISR
! EVEN
N IVECS DATAT VOISR
¢ EVEN
) V7ISR DATAT 0 :New Int Mask: MASK ALL INTERRUPTS
o DATAT 0 ;New Status Word
W DATAT ITISR ;New Ingtruction Counter
Q] EVEN
? VOISR DATAT 0 :New Int Masgk: MASK ALL INTERRUPTS
DATAT 0 ;New Status Word
K DATAT I9ISR ;New Instruction Counter
) EVEN
. iU U G U U U S
o\ : INTERRUPT HANDLER FOR TIMER A
' :1QW REST 100
8 EVEN
1 I7ISR TAH ; Stop Timer A
X TBH : Stop Timer B
B INCM 1,0500 ; INCREMENT THE CLOCK TICK COUNT
K TAS : Regtart Timer A
{ TBS ; Regtart Timer B
5 ENBL RE-ENABLE INTERRUPTS
K LSTI 0002E ‘Reload old status
¥ ; [2E + 0] -> MK,
" ; [2E +«+ 1) -> SW,
" ; [2E + 2) -> IC (RETURN)
: ; INTERRUPT HANDLER FOR TIMER B
! , EVEN
f I0ISR TAH : Stop Timer A
K TBH ; Stop Timer B
‘s INCM 1,0801 : INCREMENT THE CLOCK TICK COUNT
TAS ;i Restart Timer A
{_ TBS : Regstart Timer B
4
; 108
..

.".’ "f'“@ﬁ"“"“"“ﬁ“mﬁmwwtth”ﬂvﬂﬂt»ﬂUJlHMM“MNﬂM&MﬂNWoMNMa‘

SN (AKH

gﬁ ENBL ; RE-ENABLE INTERRUPTS
y? LSTI 00032 ; Reload old status (see above)
A ’
Py RESETIV DSBL ; Disable Interrupts
N : PSHM RO ,R1 ;: Save RO and Rl
o SR RO ,RO ; Set RO = O
N SMK RO ;i Clear Interrupt Mask
S CLIR ; CLEAR ANY PENDING INTERRUPTS.
' TAH i Stop Timer A and B and Reset them
O TBH ; Both to Zero
" OTA RO
o OTB RO
e
'.I.‘
o L R1,IVEC7 ;SET UP INTERRUPT VECTORS FOR TIMER A
(ST R1,0002F ;02F is Int Svc Ptr Addr for Int 7
“'
~Q L R1,IVECS ; SET UP INTERRUPT VECTORS FOR TIMERB
h: ST R1,00033 ; 033 is Int Svc Ptr Addr tor Int 9
».‘,0
km RCFR RO ;CLEAR THE FAULT REGISTER
° CLIR ; Clear Pending Interrupts
N ENBL : Enable Interrupts Any NEW ONES
’é LIM R0,05940; Reszet the interrupt mask
'
288
\-' SMK RO ;
POPM RO,R1 ; Restore RO and RI
URS R15
Y END
N
1
)
S
:: Returning the Interrupt Count and Timer Register Contents
R
D) The assembly language routine GET_TIMERS is called from
1"‘
) the procedure GET_ALL_TIMES in package TIME_PACKAGE_1750A and
by
* passes two long_integer (32-bit) objects as arguments. When
3 ‘.
DAY
the GET_TIMERS routine is entered, registers 3 and 4 contain
O
5, the addresses of the two values that the GET_ALL_TIMES
1Q
o
% A procedure is expecting back. GET_TIMERS retrieves the
l,-
interrupt count for interrupt 7/9 from memory location 500/501
e
fu . and stores thie in the lower half of the 32 bit return
oo,
sﬁ variable. This has the asame effect ag multiplying the
n."
9. interrupt count by 65,536. QGET_TIMERS then useg a
3
)

S
%‘ 109

'\00

)
e) '| t,

’l.c".c v

Ga080
e e) '0."

¢
l o O‘ ‘.0“.0

MIL-STD-1750A XIO instruction to retrieve the values of the
timer registers and stores these values in the upper half of
the return variables indicated by the addresses in registers 3
and 4.

Registers 3 and 4 were used in the assembly routine after
the TIME_PACKAGE_1750A was initially compiled and I found that
registers 3 and 4 were being used by the Ada procedure to pass
the return addresses of the output parameterg to the assembly
routine. When writing assembly language routines that will be
called from Ada, one must first determine the registers the Ada
calling routine is using to pass parameters to the called
assembly language routine. QGET_TIMERS is linked to an Ada
procedure, also called GET_TIMERS, using the pragma interface.

The assembly language socurce code for GET_TIMERS is given

below.

GET TIMERS Source Code

I EEE RS RS EREEEREERER R EEEEEE R R X R ERE SR EEXEEEERESERREE RS EESER R R X

Name : GET_TIMERS

Author: Capt Dan Joyce

Date: 31 Aug 87

Version: 1.2

Description: This is a 1750A assembly language routine
decigned to return the valuesg of the timer A and Timer B
clocks to a predefined location in memory. This routine

must be used with the TIME_PACKAGE. The timers will be
loaded in memory locationg identified in register 3 and 4:
TimerA => [R3,R3+1]
TimerB => [R4,R4+1)]
The value of the timer is2 loaded at the upper half of the
double word (higher memory) The lower half will contain
the number of interrupts that have occurred, 8o the entire
32 bit word will contain the total number of ticka. For
example, assume that 3 interrupts have taken place on
timer A, and the current value of the timer A register is

X % ¥ X X X ¥ ¥ X & X ¥ X X X ¥ X

110

(7
OO N N
."c',‘x',".:'*.,’"“.‘. OGO

SN T VT St
‘ n".-'—"u" N "'-".-4".“'.' '

(]
'1‘1'1’1‘-‘1'
L A T R

K

O (3

v >/
ﬂ‘,\{'\ %S S

% X
DARIAN ..‘ L Sl BT

».

* 25 (hex). The value for [R3,R3+1] will be (in hex)
* 00030025.
* The number of interrupts will be updated by modified
* Interrupt service routines for interrupt 7 (Timer A) and
* interrupt 9 (Timer B) in the asgsembly routine RESETIV,
* which is tied to the Ada procedure
» RESET_INT_VECTORS_7_AND_6 with a pragma interface in
® TIME_PACKAGE_1750A. The number of interrupta must be
* stored at location 500 (timer A) and 501 (hex) for Timer
* B. See the Source for RESETIV.ASM.
»
* This must be called using pragma interface:
*
* Ada equivalent: procedure get_timers(timer_a_ret,
* timer_b_ret);
®
LA EESEEEEEE RS SRR R R EREEEE R EEE R R R R R E R R EREEE R R R R R R R R R R R ERRR R R RN R
MODULE GET_TIMERS
EXPORT GET_TIMERS
RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R12 EQU 12
R14 EQU 14
R15 EQU 15
GET_TIMERS EQU »
DSBL ; Disable interrupts so clock
; Can’'t wrap around during
: routine
PSHM RO,R1l4 ; Save Registers RO,R1
XORR RO ,RO ; Clear RO
L R2,0500 ; Load # Timer A intpts
STBX R12,R3 ; Store contents of R2 at
; [R3+0) (R12-12 = RO)
L R2,0501 : Load % Timer B intpts
STBX R12 R4 i Store contents of R2 at
; [R4 +# 0] (R12 - 12 = RO)
AIM R3,1 ;Add 1 to Reg 3 and R4 so they
AIM R4,1 ; point to the next locations
;i In memory (gecond 16 bits)
ITA R2 7+ R2 (- Timer A
STBX R12,R3 i Store contente of R2 at
; [R3 + 0 1 (R12 - 12 = RO)
ITB R2 ; R2 (- Timer B

AT
fe"t‘\,'t‘,‘n..,'. ‘QA n. ,1

111

e -.o'\ W IO tft 0, ‘.i P 0"‘4 Rl 0N BINDAN L RI

. -
‘n— .l.

~ MR D N

]

- -
)]

LA

[

A

a % Oy .
. Azf- .}\ \'s’\'.\'s .

STBX R12,R4 ; Store contents of R2 at

; [R4 + RO] (R12 - 12 = RO)
POPM RO,R14 iRestore Registers RO to Rl4
ENBL ; Allow Interrupte again
URS R15 ; return
END

Packaging the Procedures for Use

TIME_PACKAGE_1750A, finally, groups all of these
procedures in one place and defines an interface through the
entirely Ada procedure GET_ALL_TIMES, which converts the
integral values of Timer A and B “ticks” to a floating point
value in seconds. Floating point was used instead of fixed
point because the possibility of losing precision is greater
with fixed point numbers, even using deltas of 0.00001 and

0.0001. The comments in the source code explain how to use the

package.

TIME PACKAQGE 1750A Source Code

-- TIME_PACKAGE_1750A

-- This package contains functione and procedures that will
-- return elapsed time to the caller.

-- INSTRUCTIONS FOR USING THIS PACKAGE:

-- 1) "With" the package (and “use” the package if you
-- don't want to make qualified calls).

-- 2) Declare at least two objects of type TIME_1750A

-- (defined in this package) as the parameters returned by the
-- procedure QGET_ALL_TIMES, eg.

-- timera_return : TIME_1750A
-- timerb_return : TIME_1750A

0.0;
0.0

-- 3) Make a call to RESET_INT_VECTORS_7T_AND_S8. This should
-- be the first executable statement in the program using this

112

0 : OAGO000 BOO0L O OO A L M A) R ANBCE IO (%30 AR
T D AR

-- package. RESET_INT_VECTORS_7_AND_9 allows

-- TIME_PACKAGE_l1750A to calculate the elaspsed time.
-- 4) Make calls to GET_ALL_TIMES, eg:

-- GET_ALL_TIMES(timera_return,timerb_return);

-- Author: Capt Dan Joyce
-- Date: 06 Sep 1687
-- Version: 1.6

with SYSTEM;
package TIME_PACKAGE_1750A is

subtype time_1750A is LONG_FLOAT range 0.0 .. 1.0E30;
current_total_aticks : long_integer := 0O;
current_total_bticks : long_integer := 0;

-- These two memory locations are used by the interrupt

-- Service routines as storage for the interrupt count

-- Get_Timers will read the number of timer a/b interrupts
-- from these locations. The Address Clause keeps Ada from
-- using these locations for anything else.
timera_interrupt_count : integer := 0;
timerb_interrupt_count : integer 0;

for timera_interrupt_count use at 16#%#0500%;

for timerb_interrupt_count use at 16%0501%#;

procedure RESET_INT_VECTORS_7_AND_9;
pragma interface(assembly,reset_int_vectors_7_and_9,
‘resetiv’);

procedure GET_TIMERS(aticks_return : out long_integer;
bticks_return : out long_integer);
pragma interface(assembly,get_timers,6 "get_timers”);

procedure GET_ALL_TIMES(elapsed_timera : out time_1750A;
elapsed_timerb : out time_17504A);

end TIME_PACKAGE_1750A;
package body TIME_PACKAGE_1750A is
procedure GET_ALL_TIMES (elapsed_timera : out time_17504;
elapsed_timerb : out time_1750A) is
begin

GET_TIMERS (current_total_aticks,
current_total_bticks);

113

‘ if current_total_aticks < C then

K current_total_aticks
¢ end if;

0;

if current_total_bticks ¢ O then
current_total_bticks 0;
end if;

WA

elapsed_timera :=
) TIME_1750A(current_total_aticks) / 100_000.0;

‘ elapsed_timerb :=
TIME_1750A(current_total_bticks) / 10_000.0;

end GET_ALL_TIMES;

end TIME_PACKAGE_1750A;

ol

-
PR

NI
—
| o d
-

-
-
a

e =

SO0 Q OO0 OOJOON00 W, 0 (5 0 Y
’f‘ﬂ.'ﬂ" n' Nty || $ “‘.' v.'c‘ 'O‘u'u'.'u'. n‘ ‘t’. o8 \."y l'.. o ‘ "0 A "0 e ey o "‘c‘.’n I ! ‘ .0 '.,c N .l".! . Oi'."*‘."‘.' ‘.""’"o“‘ O "o " vl e

[i Y 0

b WV O IR T VRN O T U FUR O TR U W T T Y yrew vv*,'vr'-"'j

£3
e
4 B
.Q‘ -
$$
:&J Appendix G: Two-Sample ¢ Test Calculations
c":' \
LR
.4 This appendix contains the two-sample t test calculations
B X
'Q{ - used to test the hypothesis that the mean interrupt delay time
Ny
‘:ﬁ for INT _TEST! was less than that for INT_TEST2, INT_TEST3, or
L) 'g‘ -
f\ INT_TEST4; and the hypothesis that the mean interrupt delay for
Y
P $ INT_TESTS was less than that for INT_TEST6.
o
i All hypothesis testing was done at the 0.01 level of
S
y significance. The sample size for all teats was 100, thus the
’»3 critical value for the one-sided test was
L]
e
i3 = .
‘,: t0.01,198 2.33 (Larsen and Marx, 1986:580).
)
(!

The formula for the test statistic for the two sample ¢

wg, test is:

% t = (x-y)/0ls (1n+ 1l/m®)] (1)
#5’ xy P
o where
=
b s = pooled variance,
»"-"\ p
ft' n = sample size of the X population,
iy
[.
) m = gample size of the Y population.
LN
0}: The subscript on variablesgs in thizs appendix refers to the
ﬁ.,.
L™ -
&*: interrupt benchmark number, i.e. x, is the mean for INT_TEST2
&',
o . and sp12 is the pooled variance for INT_TEST! and INT_TEST2.
.l".
ﬁ:, The following pooled variances were calculated from the sample
’
f % variances reported in the benchmarks:
)
X s = 7.238 % 10°° g = 6.721 % 10°°
On pl2 ' pla '
>
SSI -6 -6
.. V-] = 7.567 » 10 8 = 7.009 # 10
'“ﬁ pl3 p56
"
o
[B4
N
I"
Y
'l'gt 115
D
)
'oft‘o
@4
M

t"

L T Bn AT o T TR T A T Cu A N R Bt DM NI AT D s T B O A e e e D A R M
ROLION AN (N OO O O RO U AN A WO OWOMTRA) UG v 0!
S e L T Wittt sttt aty “‘t‘l‘.'t'-'.' hatahahalnhahaatiratadatgtol,

SN
~ Il

The following sets of hypotheses were tested:

N s XEESE PN

Hol2; PI > u2 vs. Ha12: Pl < #2
‘ Ho1z® "1 2 %3 ve. Hayzt %) < ¥
< Hota' "1 2%y ve. Haygr vy CFy
J H056: Yy 2 e vs. HaSG: kg ¢ g
& Using formula | for the test statistic and the sample
. means reported in Table IV in Chapter S, the following test
K
(statistics were calculated:
"
. t12 = -35.776 t14 = -56.918
W
1 t13 = -55.414 t56 = -19.168
] In all cases, these values are less than -2.33, the critical ¢
3 value, therefore all Ho hypotheses are rejected.
.
[
L)
'}
.
!
q
)
X)
q{
)
i o
@
€
"
.
b,

116

A
Y
)
q
&
P

—_— ” .
- i 1 LA B DAOALBGHUOONU] Ca M M e YUCHA A OO
DASADAINY 'f‘a"'e':f*‘:‘ RN R A '.-‘".Tt’{’a".’s*'.‘.",f“ WL T g e

- AT A A o
L] S i
Lath l',.‘l't'\"t“ :"40 } v'\'\hqu o+ (!\\.n'(‘ﬂ'

Bibliography

f Ada Joint Program Office. Ada Compiler Validation Procedures

r and Quidelines. Washington: AJPO, 1 January 1987.

j Ada Information Clearinghouse. Validated Ada Compilers List.

F Washington: AJPO, 1 September 1987.

o

' Altman, Neal. "Factors Causing Unexpected Variations in Ada
Benchmarks,” Draft Report, May 1987, Software Engineering
Ingtitute, Pittsburgh, PA. (Report number SEI-87-MR-12)

1 Bassman, Mitchell J. and others. “An Approach for Evaluating

' the Ferformance Efficiency of Ada Compilers,” Ada
Letters, 5: 151-163 (Sept, Oct 198%5).

N Booch, Grady. Software Engineering with Ada, Second Ed. Menlo

o Park California: The Benjamin/Cumminge Publighing

A Company, 1887.

a Boeing Military Airplane Company (BMAC), "“Ada Compiler

b Evaluation Capability Operational Software: Software

. Requirements Specification.” Document Number S500-11703.

2 BMAC, Wichita KS, 5 August 1687.

Bennett, SSgt, James, Personal Interviews. ASD/ENASF, Wright-

Patterson AFB OH, June-July 1687.

)

- Benwell, Nicholas, ed. Benchmarking: Computer Evaluation and

A Measurement. Washington, D.C.: Hemisphere Publishing

- Corporation, 1975.

. Brashear, Philip, ACVC Maintenance Manager. Personal
Interviews. SofTech, Inc., Dayton OH, July 1987a.

- ----- , ACVC Maintenance Manager. Persnnal Corregpondence.

X SofTech, Inc., Dayton OH, 30 September 1987b.

‘ Bunce, Philip. Handouts distributed at "Ada/MIL-STD-1750A

2 Isgsues” Tutorial. Ada-JOVIAL User's Group Meeting, Dayton

3 OH, 13 July 1887.

<

j Chitwood, Georgeanne, Ada Validation Facility Manager. Personal
Interview. ASD/SCOL, Wright-Patterson AFB OH, April 1987.

4

\ Clapp, Ruszsell M. and others. “Toward Real-Time Performance

: Benchmarks for Ada,” Communications of the ACM, 29:

760-778 (Aug 1686) .

Clements, Paul, Software Engineering Applicationg Section
j Chief. Telephone Intervijews. Naval Research Lab,
Washington, D.C., July 19687.

117

»

U

% 5T P R vy R T YR NP WSSO S '.\\.
NG ! T el -vl'-(l‘-'ﬂ‘n"v‘ w-r " ERE ST r-' ~-"
\"'c".'.k" oW e A ahy o) ‘ .'!.‘.».A. ﬁ'\ A ... Fom Pt A R Wi Y, A . T ¥ "Er..ﬂuuim

-

Conn, Richard. The Ada Software Repository and the Defense
Data Network. New York: New York Zeotrope, 1987.

Craine, David B. Ada Compiler Evaluation Techniques for
Real-Time Avionics Applications. MS Thesis,
AFIT/GCS/MA/86D-6. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1986.

Department of Defense. Military Standard: Sixteen-Bit Computer

Ingtruction Set Architecture. MIL-STD-1750A. Washington:
U.S. Government Printing Office, 21 May 1982.

Department of Defense. Military Standard: Ada Programming
Language. ANSI/MIL-STD-1815A. Washington: Department of
Defense, 22 January 1983

Department of Defense. Military Standard: JOVIAL (J73)
MIL-STD-1586C. Washington: Department of Defense,
6 July 19684.

Department of Defense. Use of Ada in Weapon Systems. DoD
Directive 3405.2. Washington: Q@Government Printing
Office, 30 March 1987.

Goodenough, John B. The Ada Compiler Validation Capability
Implementers’ Quide: Version 1. SofTech, Inec., Waltham,
MA, December 1986.

Johnson, Conrad, Senior Software Engineer. Telephone Interview.
Sonicraft, Inc., Chicago IL, 10 September 1987.

King, Capt, David, Software Group Lead. Personal Interview.
ASD/ENASF, Wright-Patterson AFB OH, March 1987.

Klemens, John D. Examination of the Effects of Using Ada
in Flight Control Software. MS Thesisg,
AFIT/GCS/MA/87D-3. School of Engineering, Air Force
Ingtitute of Technology (AU), Wright-Patterson AFB OH,
December 1987.

Larzen, Richard J. and Morrig L. Marx. An Introduction to
Mathematical Statistics and lts Applications. Englewood
Clitfsg, NJ: Prentice-Hall, 1086.

Lyonsg, Maj, Robert. “Ada Insertion into ATA, ATF, and LHX - A
Tri-Service Persgpective®, presentation to Ada-JOVIAL
User’'s Group, Dayton OH, 14 July 1887.

Myersg, Ware. "Ada: First Ugsers - Pleased; Prospective Users -
Still Hesitant, Computer, 20:71 (March 19087).

118

>
ﬁ Performance Issues Working Group (PIWG). Ada Slices: Official
N Newsletter of ACM SIGAda PIWG. December 1986.
~ 3
|
\4 Phillips, Stephen P. and Peter R. Stevenson. "The Role of Ada
VK; in Real Time Embedded Applications,” Ada Letters,
‘x: 6: 54-60 (Nov, Dec 1886).
a3
s
'{j Pitarys, 1Lt, Marc, Avionics Systems Engineer. Personal
.? Interviewa. AFWAL/AAAF-3, Wright-Patterson AFB, OH,
) July, 1687.
;;Q Ploedereder, Erhard. "Ada Compiler Validation,” Application of
2. Adas Higher Order Language to Quidance and Control, Paper
s 7. 1-8. NATO Advisory Group for Aerospace Research and
@. Development. June, 1986 (AD-A171209).
% Roark, Chuck and Ron McAfee. "The Applicability of Ada to
i;f MIL-STD-1750A, " Unpublighed article, Texas Instruments,
.éi Plano, TX, July 19087.
:& Roark, Chuck, Senior Member Technical Staff. Personal
‘b Interview. Texas Instruments, Dayton OH, 15 July 19887.
'f Seward, Dave, Principal Engineer. Telephone Interview.

[Advanced Computer Techniques, New York, New York, 15 July
N 1987.

Squire, Jon, Chairman, ACM SIGAda PIWG, Telephone Interviews.

o Westinghouse Defense and Electronice Center, Baltimore MD,
A5 April, June 1687.
g
> Wilson, Steven, Ada Task Leader. Personal Interview.
), ASD/SCOL, Wright-Patterson AFB OH, April 1987a.

----- . Using the ACVC Tests (Version 1.9). Unpublished

455 Document. ASD/SCOL, Wright-Patterson AFB OH, April 1987b.
: o

g

D ”

t}a Witt, Donald J. Using Ada in the Real-Time Avionics

s Environment: Iggues and Conclusions. MS The=sis,

® AFIT/GCS/MA/85D-6. School of Engineering, Air Force

. Ingtitute of Technology (AU), Wright-Patteraon AFB OH,
oo December 1985.

A g
(AR)) L))
. fo" AT

O AOSAGAOOSOAMMM RO OGO OGOOC M XOIUGOTOR MO Ly WERS V) (P TR
B T T R R T O N N A O I e N DT e K U

P

.

*
L 4
[

s VITA

h.

b
!

2 Captain Daniel 0. Joyce was born on 21 October 1959 1in

. L]

A Riverside. California. He graduated from Foxcroft Academy in
"

Q' Dover-Foxcroft, Maine in 1977 and attended the University of

) New Hampshire, from which he received the degree of Bachelor of
e Science 1n Mathematics in May 198)1. Upon graduation, he
< received a commigsion in the USAF through the ROTC program. He
g. completed technical training at Keesler AFB, Misgsiggippi in

i)

] January 1982 and was assigned as an Attrition Modeling Systems
'~

L Analyst to 1851lst Information Systems Support Squadron, Offutt
q

N AFB, Nebraska. He entered the School of Engineering, Air Force
3 Institute of Technology, in June of 1986.
':
I.
"

o

-

’

N Permanent address: c/0 John A. Glover

i, "
K. Box 265
:l Monson, Maine 04464

A .
[,

N
-
4y

s

"

N 120

)

¢

It

B
M

- . AT A . .- - - s s . i e
) Y K ()) H 0 N W g O B v OUCRIEEN e (alnair
lAQ‘Q?"Q'_.O.‘,t, .v:i.o".a.‘\v_‘,t,‘éz,~‘\,°,q"¢! EOVCAM IR NN ..C'Q‘Q:?;|".! O St N ‘.0;§,{‘f50ﬁ‘,ilf.!“.'.!‘i:’iQ QU A

a2 biedadadan o das dak Jdhat dhad

LNCIASSIFIED
“éUi”V CLASSIFICATION OF THI1S PAGE

hadinko il dal A i el gnt dat St Sal Aok dhat Sot dad Sad Ao Aoy ser Mg Bes 28 Al Al Aad Loa Aus s 4h o &) 4

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

‘a REPORT SECUR'TY CLASSIFICAT:ON

Cniclassified

1o RESTRICTIVE MARKINGS

28 SECURITY CLASSIFICAT:ON AUTHORITY

3 DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION ' DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited.

AFIT/GCS/MA/87TD-2

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

5 MONITORING ORGANIZATION REPORT NUMBER(S)

63 NAME OF PERFORMING ORGANIZATION

School of Enjylineering

6b OFFICE SYMBOL
(If applicable)

AFIT/ENG

7a NAME OF MONITORING ORGANIZATION

bl ik Il Sl Sad Ad Sk At A B d A8 L4 28 nd 2 g o]

6¢. AQDRESS (City, State, .?nd Z2IP Code) 7b. ADDRESS (City, State, and ZIP Code)
Alr Force Institute of Technology (AU)
wright-ratterson AFB, Ohio 425423-06583
8a NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL [9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
CGAN!%AT@QD{ noor it (/f applicable)
ystoms Lngineoring .
Avionics Facllity ASD/ENASF
8¢c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
ASD/ENASE PROGRAM PROJECT TASK WORK UNIT
wright-Pasterson AFB, Ohlo 43433 ELEMENT NO I NO NO ACCESSION NO

TITLE (Include Security Classification)

VALIDATING AND EVALUATING ADA'S REPRESENTATION CLAUSES AND
DMPLEMENTATION-DEPENDENT FEATURES ON MIL-STD-

1750A ARCHITECTURE

12 PERSONAL AUTHOR(S)
Danicl 0. Joyce, Capt, USAF

13a. TYPE OF REPORT 13b TIME COVERED

14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT

MS Thesis FROM TO 11387 December 132
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP *Ada Compilers Benchmark Validation
N 05 Embedded computer -
i 08

ThMesis Advisor:s Richard R. Gross, b Col,

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

USAF
Assistant Dean, School of Engincering

1AW ATR 190,

Rpproved D zhtc 1e'e we!

Jﬁ:; EovoLaT I ““ \
[Rod A . ¢~ Tevelipment
¢ . o—p—

v

20 DISTRIBUTION ' AVAILABILITY OF ABSTRACT

D unciassieieomunumired [SaME AS RPT O oTiC USERS

ABSTRACT SECURITY CLASSIFICATION
Unclassified

21

228 NAME OF RESPONSIBLE INDIVIDUAL

Richard R. Gross, L.t Col, USAF

22¢ OFFICE SYMBOL
AFIT/EN

22b TELEPHONE (Include Area Code)
(513) 255-4372

DD Form 1473, JUN 86

Previous editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

" -

- -

B

"

-
ot %

LY

e

- r
‘l‘-ll .

-

OGSO IS\)
s I A

.

v

A u ~ L u il adiee e il
" A 4o B 0

Abstract

Developers of applications for embedded systems need full implementations
for all of the representation clauses and implementation-dependent features
in Chapter 13 of the:Language Reference Manual! (LRM) if they are to be
successful in developing these application entirely in Ada. Because
implementations of Ada's representation clauses and implementation-dependent
features vary from compiler to compiler, these features must be validated
and evaluated before they are used in applications that have such high
reliability requirements. This thesis describes an approach used to develop
validation tests and performance evaluation tests, or benchmarks, for Ada's
address clauses and interrupts features and reports the results of the
validation tests and benchmarks.

The valicdation tests were compiled with three validated Ada compilers,
two of which were targeted to the MIL-STD-1750A processor. The benchmarks
developed in this research measure interrupt delay time for interrupts associated
with a task entry by an address clause. These benchmarks were compiled with

a validated Ada compiler targeted to the MIL-STD-1750A and run on a Sperry
1631 MIL-STD-1750A processor.

N

] D ‘
GRS ORI O

ot

- < 4 AR o 0]
ANRAAAAGASOIGN ' ‘ AT R T A A W, R OESRINN
] ORI ?‘\"‘ﬂ"al"r" .ts‘,'s.,‘:',g:‘,J“..n.\ T NS lm“u'5_.0‘2.'.5“0‘0;.0‘0@?',.‘t‘. ol W OMULLEN

‘
& 3
B b
, >
"y
;.‘.' \
M “
FK' g
P ™ +
B ' 'i
v" ‘ ‘.
("": Y
> .
AN .
ot N
o ‘.’i’ :.:
..Q] KA
[) .
AT 3
ks I
S L
o *
SN y
s o),
’.Q.’ iy
AN 5
" Y
L5 A
oy A
WO o
' A'J N
) L
J | X
: ?)
g M)
e &0
- s
-~ ¢
o —— o
Sl (X
;*..' I
‘J
. ' ';.‘
d N
L e @, o,
'))'v / ;:o
1 o:’
-
B
)
LAY}
0'“.'.
. ,'
o
':::.
:‘ 't

oy O ® o e ® o L L o ®

R R I A N e T S L R EE, U
" v :) :j'_-. NS e
0 » "

]
RS A30A l',':'yt..lha AT
OGNS N B AIHCR AR K AR ARSI A

